Интерлинация функций 2-х переменных на $M (M\geq2)$ прямых с наивысшей алгебраической точностью

  • А.Н. Литвин Харьк. инж.-пед. ин-т

Анотація

Запропоновано загальний алгоритм побудови операторів інтерлінації $\bar O_{MN}f(x)$, $x = (x_1,x_2)$ з властивостями

$$\frac{\partial ^s \bar O_{MN} f}{\partial v_k^s }\Bigg|_{\Gamma _k } = \frac{\partial ^s f}{\partial v_k^s }\Bigg|_{\Gamma _k } = {\varphi _{ks} (x)}\Bigg|_{\Gamma _k } ,k = \overline {1,M}; s = \overline {0,N} , $$

$$\bar O_{MN} x^\alpha \equiv x^\alpha ,0 \leq |\alpha | = \alpha _1 + \alpha _2 \leq M(N + 1) - 1, x^\alpha = x_1^{\alpha _1 } x_2^{\alpha _2 } ,$$

де ${\Gamma _k }$ - задана множина прямих довільного розміщення на площині $Ox_1x_2$, $v_k \bot \Gamma_k$. Наведено інтегральне зображення залишку наближення функції $f(x)$ операторами $\bar O_{MN} f(x)$. Розглянуто приклади операторів інтерлінації із збереженням класу $C^r(R^2)$, а також операторів, які не зберігають клас диференційовності, якому належить функція $f(x)$.

Посилання

Литвин О. Н. Формула В. Л. Рвачева в случае областей с угловыми точками // Укр. мат. журн. – 1972. – 24, №2. – С. 238 – 244.

Литвин О. Н. Полиномиальная интерлинация Тейлора функции 2–х переменных на нескольких прямых // Изв. вузов. Сер. мат. – 1989, №2. – С. 19 – 27.

Литвин О. Н. Интерполяция данных Коши на нескольких параллельных прямых в $R^2$ с сохранением класса дифференцируемости // Укр. мат. журн,– 1985.–37, №4.– С. 509 – 513.

Литвин О. Н. Интерлинация функций 2–х переменных на $M (M > 2)$ прямых с сохранением класса $C^r(R^2)$ //Там же. – 1990. – 42, №12. – С. 1616–1625.

Литвин О. Н., Федько В. В. Обобщенная кусочно–эрмитова интерполяция // Там же. –1976. – 28, №6. – С. 812 – 819.

Mettke Н. Fehlerabschatzungen zur zweidimensionalen splineinterpolation // Beitr. Numer. Math. – 1983.–N11.–P.81–91.

Корнейчук H. П. Сплайны в теории приближения. – М. : Наука, 1984. – 350 с.

Nielson G. М., Thomas D. Н., Wixom J. A. Interpolation in triangles // Bull. Austral. Math. Soc. –1979. – 20.–P. 115–130.

Nielson G. M. Blending method of minimum norm for triangular domains // Rev. voum. Math. pures et appl. – 1980. – 25, №6. P – 899 – 910.

Опубліковано
06.11.1992
Як цитувати
ЛитвинА. «Интерлинация функций 2-х переменных на $M (M\geq2)$ прямых с наивысшей алгебраической точностью ». Український математичний журнал, вип. 44, вип. 11, Листопад 1992, с. 1498-04, https://umj.imath.kiev.ua/index.php/umj/article/view/8251.
Розділ
Статті