On the analog of the Sălăgean class for Dirichlet series and the solutions of one linear differential equation with exponential coefficients

Authors

  • M. Sheremeta Lviv Ivan Franko National University
  • O. Mulyava Kyiv National University of Food Technologies
  • M. Medvedev Tavria National University named after V. I. Vernadskyi

DOI:

https://doi.org/10.3842/umzh.v76i9.8555

Keywords:

-

Abstract

UDC 517.537

In his study of the geometric properties of functions analytic in a disk D={z:|z|<1}, G. S. Sălăgean introduced a class Sj(α) of functions f(z)=z+k=2fkzk such that ReDj+1f(z)Djf(z)>α[0,1) for each zD, where Djf is the Sălăgean derivative. For Dirichlet series F(s)=esk=1fkexp{sλk} with fk0 absolutely convergent in the half plane Π0={s:Res<0}, an analog of the Sălăgean class is the classDj(α) defined by the condition ReF(j+1)(s)F(j)(s)>α for each sΠ0. By analogy with the neighborhood of an analytic function in D defined by A. V. Goodman, for FDj(α), we introduce the concept of a neighborhood Oj,δ(F) and establish the conditions under which all functions from Oj,δ(F) belong to Dj(α1), 0α1<α<1, and vice versa. The problem of belonging of solutions of the differential equation  d2wds2+(γ0e2s+γ1es+γ2)w=0 with real parameters to the class Dj(α) is investigated.

References

G. S. Sǎlǎgean, Subclasses of univalent functions, Lecture Notes Math., 1013, 362–372 (1983). DOI: https://doi.org/10.1007/BFb0066543

Al-Oboudi, On univalent functions defined by generalized Sǎlǎgean operator, Int. J. Math. and Math. Sci., 27, 1429–1436 (2004). DOI: https://doi.org/10.1155/S0161171204108090

S. B. Joshi, M. D. Sangle, New subclasses of univalent functions defined by using generalized Sǎlǎgean operator, J. Indones. Math. Soc., 15, № 2, 79–89 (2009). DOI: https://doi.org/10.22342/jims.15.2.46.79-89

M. Caclar, A. Deniz, Initial coefficients for a subclasses of bi-univalent functions defined by Sǎlǎgean differential operator, Commun. Fac. Sci. Univ. Ank. Ser. A1. Math. and Stat., 66, № 1, 85–91 (2017). DOI: https://doi.org/10.1501/Commua1_0000000777

M. M. Sheremeta, Hadamard composition of Gelfond–Leont'ev–Sǎlǎgean and Gelfond–Leont'ev–Ruscheweyh derivatives of functions analytic in the unit disc, Mat. Stud., 54, № 2, 115–134 (2020). DOI: https://doi.org/10.30970/ms.54.2.115-134

О. М. Головата, О. М. Мулява, М. М. Шеремета, Псевдозіркові, псевдоопуклі та близькі до псевдоопуклих ряди Діріхле, які задовольняють диференціальні рівняння з експоненціальними коефіцієнтами, Мат. методи і фіз.-мех. поля, 61, № 1, 57–70 (2018).

M. M. Sheremeta, Geometric properties of analytic solution of differential equations, Publisher I. E. Chyzhykov (2019). DOI: https://doi.org/10.30970/ms.52.2.138-143

A. W. Goodman, Univalent functions and nonanalytic curves, Proc. Amer. Math. Soc., 8, 598–601 (1957). DOI: https://doi.org/10.1090/S0002-9939-1957-0086879-9

M. Kuryliak, O. Skaskiv, On the domain of convergence of general Dirichlet series with complex exponents, Carpathian Math. Publ., 15, № 2, 594–607 (2023). DOI: https://doi.org/10.15330/cmp.15.2.594-607

A. Kuryliak, M. Kuryliak, O. Skaskiv, On the domain of the convergence of Taylor–Dirichlet series with complex exponents, Precarpathian Bull. Shevchenko Sci. Soc., 68, № 18, 25–31 (2023). DOI: https://doi.org/10.31471/2304-7399-2023-18(68)-25-31

Published

30.09.2024

Issue

Section

Research articles

How to Cite

Sheremeta, M., et al. “On the Analog of the Sălăgean Class for Dirichlet Series and the Solutions of One Linear Differential Equation With Exponential Coefficients”. Ukrains’kyi Matematychnyi Zhurnal, vol. 76, no. 9, Sept. 2024, pp. 1412-8, https://doi.org/10.3842/umzh.v76i9.8555.