On the analog of the Sălăgean class for Dirichlet series and the solutions of one linear differential equation with exponential coefficients
DOI:
https://doi.org/10.3842/umzh.v76i9.8555Keywords:
-Abstract
UDC 517.537
In his study of the geometric properties of functions analytic in a disk ${\mathbb D} = \{z\colon |z|<1\},$ G. S. Sălăgean introduced a class $S_j(\alpha)$ of functions $f(z) = z + \sum _{k = 2}^{\infty}f_kz^k$ such that $\operatorname{Re} \frac{D^{j + 1}f(z)}{D^{j}f(z)} > \alpha\in [0, 1)$ for each $ z\in{\mathbb D},$ where $D^jf$ is the Sălăgean derivative. For Dirichlet series $F(s) = e^{s}-\sum _{k = 1 }^{\infty}f_k\exp\{s\lambda_k\}$ with $f_k\ge0$ absolutely convergent in the half plane $\Pi_0 = \{s\colon \operatorname{Re} s<0\},$ an analog of the Sălăgean class is the class$D_{j}(\alpha)$ defined by the condition $\operatorname{Re} \frac{F^{(j + 1)}(s)}{F^{(j)}(s)} > \alpha$ for each $s\in \Pi_0.$ By analogy with the neighborhood of an analytic function in ${\mathbb D}$ defined by A. V. Goodman, for $F\in D_{j}(\alpha),$ we introduce the concept of a neighborhood $O_{j,\delta}(F)$ and establish the conditions under which all functions from $O_{j,\delta}(F)$ belong to $D_{j}(\alpha_1),$ $0\le \alpha_1<\alpha<1,$ and vice versa. The problem of belonging of solutions of the differential equation $\frac{d^2w}{ds^2} + (\gamma_0e^{2s} + \gamma_1 e^s + \gamma_2)w = 0$ with real parameters to the class $D_{j}(\alpha)$ is investigated.
References
G. S. Sǎlǎgean, Subclasses of univalent functions, Lecture Notes Math., 1013, 362–372 (1983). DOI: https://doi.org/10.1007/BFb0066543
Al-Oboudi, On univalent functions defined by generalized Sǎlǎgean operator, Int. J. Math. and Math. Sci., 27, 1429–1436 (2004). DOI: https://doi.org/10.1155/S0161171204108090
S. B. Joshi, M. D. Sangle, New subclasses of univalent functions defined by using generalized Sǎlǎgean operator, J. Indones. Math. Soc., 15, № 2, 79–89 (2009). DOI: https://doi.org/10.22342/jims.15.2.46.79-89
M. Caclar, A. Deniz, Initial coefficients for a subclasses of bi-univalent functions defined by Sǎlǎgean differential operator, Commun. Fac. Sci. Univ. Ank. Ser. A1. Math. and Stat., 66, № 1, 85–91 (2017). DOI: https://doi.org/10.1501/Commua1_0000000777
M. M. Sheremeta, Hadamard composition of Gelfond–Leont'ev–Sǎlǎgean and Gelfond–Leont'ev–Ruscheweyh derivatives of functions analytic in the unit disc, Mat. Stud., 54, № 2, 115–134 (2020). DOI: https://doi.org/10.30970/ms.54.2.115-134
О. М. Головата, О. М. Мулява, М. М. Шеремета, Псевдозіркові, псевдоопуклі та близькі до псевдоопуклих ряди Діріхле, які задовольняють диференціальні рівняння з експоненціальними коефіцієнтами, Мат. методи і фіз.-мех. поля, 61, № 1, 57–70 (2018).
M. M. Sheremeta, Geometric properties of analytic solution of differential equations, Publisher I. E. Chyzhykov (2019). DOI: https://doi.org/10.30970/ms.52.2.138-143
A. W. Goodman, Univalent functions and nonanalytic curves, Proc. Amer. Math. Soc., 8, 598–601 (1957). DOI: https://doi.org/10.1090/S0002-9939-1957-0086879-9
M. Kuryliak, O. Skaskiv, On the domain of convergence of general Dirichlet series with complex exponents, Carpathian Math. Publ., 15, № 2, 594–607 (2023). DOI: https://doi.org/10.15330/cmp.15.2.594-607
A. Kuryliak, M. Kuryliak, O. Skaskiv, On the domain of the convergence of Taylor–Dirichlet series with complex exponents, Precarpathian Bull. Shevchenko Sci. Soc., 68, № 18, 25–31 (2023). DOI: https://doi.org/10.31471/2304-7399-2023-18(68)-25-31
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Мирослав Шеремета

This work is licensed under a Creative Commons Attribution 4.0 International License.