Legendre curves and the singularities of ruled surfaces obtained by using rotation minimizing frame

Ключові слова: Tangent bundle of sphere, Rotation minimizing vector field, Legendre curve, Ruled surface, Singularity

Анотація

УДК 514.7

Кривi Лежандра та сингулярностi лiнiйчатих поверхонь, якi отримано за допомогою репера
з мiнiмальним обертанням

У цiй роботi кривi Лежандра в одиничному дотичному жмутку наведено за допомогою векторних полiв з мiнiмальним обертанням. Описано лiнiйчатi поверхнi, що вiдповiдають цим кривим. Також проаналiзовано та класифiковано сингулярностi таких поверхонь.

Посилання

S. C. Anco, Group-invariant soliton equations and bi-Hamiltonian geometric curve flows in Riemannian symmetric spaces, J. Geom. and Phys., 58, 1 – 37 (2008), https://doi.org/10.1016/j.geomphys.2007.09.005 DOI: https://doi.org/10.1016/j.geomphys.2007.09.005

C. Baikoussis, D. E. Blair, On Legendre curves in contact $3$-manifolds, Geom. Dedicata, 49, № 2, 135 – 142 (1994), https://doi.org/10.1007/BF01610616 DOI: https://doi.org/10.1007/BF01610616

U. Beyhan, I. G¨ok, Y. Yayli, A new approach on curves of constant precession, Appl. Math. and Comput., 27, 317 – 323 (2016), https://doi.org/10.1016/j.amc.2015.11.083 DOI: https://doi.org/10.1016/j.amc.2015.11.083

M. Bekar, Y. Yayli, Slant helix curves and acceleration centers in Minkowski 3-space $R^3_1$, J. Adv. Phys., 6, 133 – 141 (2017). DOI: https://doi.org/10.1166/jap.2017.1306

R. L. Bishop, There is more than one way to frame a curve, Amer. Math. Monthly, 82, 246 – 251 (1975), https://doi.org/10.2307/2319846 DOI: https://doi.org/10.1080/00029890.1975.11993807

J. W. Bruce, P. J. Giblin, Curves and singularities, 2nd. ed., Cambridge Univ. Press, Cambridge (1992), https://doi.org/10.1017/CBO9781139172615 DOI: https://doi.org/10.1017/CBO9781139172615

F. Etayo, Rotation minimizing vector fields and frames in Riemannian manifold, Proc. Math. and Statist., 161, 91 – 100 (2016), https://doi.org/10.1007/978-3-319-32085-4_8 DOI: https://doi.org/10.1007/978-3-319-32085-4_8

R. T. Farouki, Pythagorean-hodograph curves: algebra and geometry inseparable, Geom. and Comput., 1, Springer, Berlin (2008), https://doi.org/10.1007/978-3-540-73398-0 DOI: https://doi.org/10.1007/978-3-540-73398-0

L. Haiming, P. Donghe, Legendrian dualities between spherical indicatrixes of curves and surfaces according to Bishop frame, J. Nonlinear Sci. and Appl., № 5, 1 – 13 (2016), https://doi.org/10.22436/jnsa.009.05.82 DOI: https://doi.org/10.22436/jnsa.009.05.82

F. Hathout, M. Bekar, Y. Yayli, $N$-Legendre and $N$-slant curves in the unit tangent bundle of surfaces, Kuwait J. Sci., 44, № 3, 106 – 111 (2017).

F. Hathout, M. Bekar, Y. Yayli, Ruled surfaces and tangent bundle of unit 2-sphere, Int. J. Geom. Methods Mod. Phys., 14, № 10, Article 1750145 (2017), https://doi.org/10.1142/S0219887817501456 DOI: https://doi.org/10.1142/S0219887817501456

S. Izumiya, N. Takeuchi, New special curves and developable surfaces, Turkish J. Math., 28, № 2, 153 – 163 (2004).

G. Mari Beffa, Poisson brackets associated to invariant evolutions of Riemannian curves, Pacif. J. Math., 125, 357 – 380 (2004), https://doi.org/10.2140/pjm.2004.215.357 DOI: https://doi.org/10.2140/pjm.2004.215.357

O. P. Shcherbak, Projectively dual space curve and Legendre singularities, Sel. Math. Sov., 5, 391 – 421 (1986).

Y. Tashiro, On contact structure of hypersurfaces in complex manifolds, Tohoku Math. J., 15, 62 – 78 (1963), https://doi.org/10.2748/tmj/1178243870 DOI: https://doi.org/10.2748/tmj/1178243870

Опубліковано
24.05.2021
Як цитувати
BekarM., Hathout F., і Yayli Y. «Legendre Curves and the Singularities of Ruled Surfaces Obtained by Using Rotation Minimizing Frame». Український математичний журнал, вип. 73, вип. 5, Травень 2021, с. 589 -01, doi:10.37863/umzh.v73i5.895.
Розділ
Статті