Estimates for analytic functions concerned with Hankel determinant
Анотація
УДК 517.5
Оцiнки для аналiтичних функцiй, пов’язанi з детермiнантом Ганкеля
Отримано верхню границю детермінанта Ганкеля першого порядку $(H_{2}(1))$ для класів аналітичної функції.
Також встановлено оцінку знизу з детермінантом Ганкеля для другої кутової похідної аналітичної функції $f(z).$
Для отримання нових нерівностей використано лему Джека та детермінант Ганкеля.
Крім того, для класу аналітичних функцій на одиничному диску за умови існування кутової границі для межової точки отримано оцінки знизу для модуля кутової похідної.
Посилання
T. Akyel, B. N. Örnek, Sharpened forms of the generalized Schwarz inequality on the boundary, Proc. Indian Acad. Sci. Math. Sci., 126, № 1, 69 – 78 (2016), https://doi.org/10.1007/s12044-015-0255-2 DOI: https://doi.org/10.1007/s12044-015-0255-2
T. A. Azeroǧlu, B. N. Örnek, A refined Schwarz inequality on the boundary, Complex Var. and Elliptic Equat., 58, 571 – 577 (2013), https://doi.org/10.1080/17476933.2012.718338 DOI: https://doi.org/10.1080/17476933.2012.718338
H. P. Boas, Julius and Julia: mastering the art of the Schwarz lemma, Amer. Math. Monthly, 117, № 9, 770 – 785 (2010), https://doi.org/10.4169/000298910X521643 DOI: https://doi.org/10.4169/000298910x521643
V. N. Dubinin, The Schwarz inequality on the boundary for functions regular in the disc, J. Math. Sci., 122, 3623 – 3629 (2004), https://doi.org/10.1023/B:JOTH.0000035237.43977.39 DOI: https://doi.org/10.1023/B:JOTH.0000035237.43977.39
G. M. Golusin, Geometric theory of functions of complex variable (in Russian), 2nd ed., Moscow (1966).
I. S. Jack, Functions starlike and convex of order $alpha$, J. London Math. Soc., 3, 469 – 474 (1971), https://doi.org/10.1112/jlms/s2-3.3.469 DOI: https://doi.org/10.1112/jlms/s2-3.3.469
M. Mateljevi´c, Rigidity of holomorphic mappings & Schwarz and Jack lemma; https://doi.org/10.13140/RG.2.2.34140.90249.
P. R. Mercer, Sharpened versions of the Schwarz lemma, J. Math. Anal. and Appl., 205, 508 – 511 (1997), https://doi.org/10.1006/jmaa.1997.5217 DOI: https://doi.org/10.1006/jmaa.1997.5217
P. R. Mercer, Boundary Schwarz inequalities arising from Rogosinski’s lemma, J. Class. Anal., 12, 93 – 97 (2018), https://doi.org/10.7153/jca-2018-12-08 DOI: https://doi.org/10.7153/jca-2018-12-08
P. R. Mercer, An improved Schwarz lemma at the boundary, Open Math., 16, 1140 – 1144 (2018), https://doi.org/10.1515/math-2018-0096 DOI: https://doi.org/10.1515/math-2018-0096
R. Osserman, A sharp Schwarz inequality on the boundary, Proc. Amer. Math. Soc., 128, 3513 – 3517 (2000), https://doi.org/10.1090/S0002-9939-00-05463-0 DOI: https://doi.org/10.1090/S0002-9939-00-05463-0
B. N.Örnek, T. Du¨zenli, Bound estimates for the derivative of driving point impedance functions, Filomat, 32, № 18, 6211 – 6218 (2018), https://doi.org/10.2298/fil1818211o DOI: https://doi.org/10.2298/FIL1818211O
B. N. Örnek, T. Du¨zenli, Boundary analysis for the derivative of driving point impedance functions, IEEE Trans. Circuits and Syst. Pt. II: Express Briefs, 65, № 9, 1149 – 1153 (2018) DOI: https://doi.org/10.1109/TCSII.2018.2809539
B. N. O¨ rnek, Sharpened forms of the Schwarz lemma on the boundary, Bull. Korean Math. Soc., 50, № 6, 2053 – 2059 (2013), https://doi.org/10.4134/BKMS.2013.50.6.2053 DOI: https://doi.org/10.4134/BKMS.2013.50.6.2053
Ch. Pommerenke, Boundary behaviour of conformal maps, Springer-Verlag, Berlin (1992), https://doi.org/10.1007/978-3-662-02770-7 DOI: https://doi.org/10.1007/978-3-662-02770-7
Ch. Pommerenke, On the Hankel determinants of univalent functions, Matematika, 14, 108 – 112 (1967), https://doi.org/10.1112/S002557930000807X DOI: https://doi.org/10.1112/S002557930000807X
J. Sok´ol, D. K. Thomas, The second Hankel determinant for alpha-convex functions, Lith. Math. J., 58, №2, 212 – 218 (2018); https://doi.org/10.1007/s10986-018-9397-0. DOI: https://doi.org/10.1007/s10986-018-9397-0
G. Szeg¨o, M. Fekete, Eine Bemerkung ¨uber ungerade schlichte Funktionen, J. London Math. Soc., 2, 85 – 89 (1933), https://doi.org/10.1112/jlms/s1-8.2.85 DOI: https://doi.org/10.1112/jlms/s1-8.2.85
D. K. Thomas, J. W. Noonan, On the second Hankel determinant of areally mean $p$-valent functions, Trans. Amer. Math. Soc., 223, 337 – 346 (1976), https://doi.org/10.2307/1997533 DOI: https://doi.org/10.2307/1997533
Авторські права (c) 2021 Bülent Nafi ÖRNEK
Для цієї роботи діють умови ліцензії Creative Commons Attribution 4.0 International License.