On Poletsky type inequality for mappings of Riemannian surfaces

Abstract

We obtain upper estimates for the distortion of the modulus of families of paths under the Sobolev class mappings, whose dilatation is locally integrable.  As a consequence, we prove theorems on local and boundary behavior for these mappings.

References

Martio, O.; Rickman, S.; Väisälä, J. Distortion and singularities of quasiregular mappings. Ann. Acad. Sci. Fenn. Ser. A I, no. 465, 1970, 13 pp. https://doi.org/10.5186/aasfm.1971.488

Martio, Olli; Ryazanov, Vladimir; Srebro, Uri; Yakubov, Eduard. Moduli in modern mapping theory. Springer Monographs in Mathematics. Springer, New York, 2009. xii+367 pp. ISBN: 978-0-387-85586-8 https://doi.org/10.1007/978-0-387-85588-2_3

Väisälä, Jussi. Lectures on $n$-dimensional quasiconformal mappings. Lecture Notes in Mathematics, Vol. 229. Springer-Verlag, Berlin-New York, 1971. xiv+144 pp.

Ryazanov, Vladimir; Volkov, Sergei. On the boundary behavior of mappings in the class $W^{1,1}_{{loc}}$ on Riemann surfaces. Complex Anal. Oper. Theory 11 (2017), no. 7, 1503–1520. https://doi.org/10.1007/s11785-016-0618-4

Ryazanov, V.; Volkov, S. Prime ends in the Sobolev mapping theory on Riemann surfaces. Mat. Stud. 48 (2017), no. 1, 24–36.https://doi.org/10.15330/ms.48.1.24-36

Väisälä, Jussi. Modulus and capacity inequalities for quasiregular mappings. Ann. Acad. Sci. Fenn. Ser. A. I 1972, no. 509, 14 pp. https://doi.org/10.5186/aasfm.1972.509

Näkki, Raimo. Boundary behavior of quasiconformal mappings in $n$-space. Ann. Acad. Sci. Fenn. Ser. A I No. 484 1970 50 pp.

Poleckij, E. A. Метод модулей для негомеоморфных квазиконформных отображений. (Russian) [Metod modulej dlja negomeomorfnyh kvazikonformnyh otobrazhenij], Mat. sb., 83 (1970), no. 2, 261–272.

Krushkal', S. L.; Apanasov, B. N.; Gusevskij, N. A. Униформизация и клейновы группы. (Russian) [Uniformizacija i klejnovy gruppy]. Novosib. gos. un-t, Novosibirsk (1979).

Berdon, A. Геометрия дискретных групп. (Russian) [The geometry of discrete groups] Translated from the English and with a foreword by A. S. Solodovnikov. "Nauka", Moscow, 1986. 301 pp. https://www.twirpx.com/file/1049045/

Heinonen, Juha. Lectures on analysis on metric spaces. Universitext. Springer-Verlag, New York, 2001. x+140 pp. ISBN: 0-387-95104-0 https://link.springer.com/book/10.1007%2F978-1-4613-0131-8

Malý, Jan; Martio, Olli. Lusin's condition (N) and mappings of the class $W^{1,n}$. J. Reine Angew. Math. 458 (1995), 19–36. https://doi.org/10.1515/crll.1995.458.19

Kuratovskij, K. Топология, т. 1. (Russian) [Topologija, t. 1]. Mir, Moskva (1966). http://biblioclub.ru/index.php?page=book_red&id=464136&razdel=213

Federer, G. Геометрическая теория меры. (Russian) [Geometricheskaja teorija mery], Nauka, Moskva (1987). https://www.twirpx.com/file/571043/

Saks, Stanislaw. Теория интеграла. (Russian) [Theory of the Integral]. Izd-vo inostr. lit., Moskva (1949). https://www.amazon.com/Theory-Integral-Dover-Books-Mathematics/dp/0486446484

Ignat'ev, A.; Rjazanov, V. Конечное среднее колебание в теории отображений. (Russian) [Konechnoe srednee kolebanie v teorii otobrazhenij]. Укр. мат. вестн. [Ukr. mat. vestn.], 2, no. 3, 395–417 (2005).

Sevost'yanov, E.; Markysh, A. On Sokhotski–Casorati–Weierstrass theorem on metric spaces. Complex Var. Elliptic Equ. 64 (2019), no. 12, 1973–1993. https://doi.org/10.1080/17476933.2018.1557155

Севостьянов, Е. А. О локальном и граничном поведении отображений в метрических пространствах. (Russian) [O lokal'nom i granichnom povedenii otobrazhenij v metricheskih prostranstvah], Алгебра и анализ [Algebra i analiz], 28, no. 6, 118–146 (2016).

Published
29.04.2020
How to Cite
Sevost’yanovE. A. “On Poletsky Type Inequality for Mappings of Riemannian Surfaces”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 72, no. 5, Apr. 2020, pp. 705–720, doi:10.37863/umzh.v72i5.2292.
Section
Research articles