Exponentially convergent method for a differential equation with fractional derivative and unbounded operator coefficient in Banach space

  • V. B. Vasylyk Inst. Math. Acad. Sci. Ukraine, Kiev
  • I. P. Gavrilyuk Hera-Eisenach University of Dual Education, Germany
  • V. L. Makarov Inst. Math. Acad. Sci. Ukraine, Kiev


UDC 519.62, 519.63

We propose and analyze an exponentially convergent numerical method for solving a differential equation with a right-hand fractional Riemann-Liouville derivative and an unbounded operator coefficient in Banach space. We apply the representation of the solution by the Danford-Cauchy integral on the hyperbola, which covers the spectrum of the operator coefficient with the subsequent application of an exponentially convergent quadrature. To do this, the parameters of the hyperbola are chosen so that the integration function has an analytical extension in the strip around the real axis and then apply the Sinc-quadrature. We show the exponential accuracy of the method and show numerical example that confirms the obtained a priori estimate.


B. Jin, R. Lazarov, Z. Zhou, An analysis of the $L_1£$ scheme for the subdiffusion equation with nonsmooth data, IMA J. Numer. Anal., 36, № 1, 197 – 221 (2016), https://doi.org/10.1093/imanum/dru063

A. Ashyralyev, A note on fractional derivatives and fractional powers of operators, J. Math. Anal. and Appl., 357, № 1, 232 – 236 (2009), https://doi.org/10.1016/j.jmaa.2009.04.012

I. P. Gavrilyuk, An algorithmic representation of fractional powers of positive operators, Numer. Funct. Anal. and Optim., 17, № 3 – 4, 293 – 305 (1996), https://doi.org/10.1080/01630569608816695

William McLean, Vidar Thom´ee, Numerical solution via Laplace transforms of a fractional order evolution equation, J. Integral Equat. and Appl., 22, № 1, 57 – 94 (2010), https://doi.org/10.1216/JIE-2010-22-1-57

I. Gavrilyuk, V. Makarov, V. Vasylyk, Exponentially convergent algorithms for abstract differential equations, Front. Math., Birkh¨auser/Springer, Basel AG, Basel (2011), https://doi.org/10.1007/978-3-0348-0119-5

I. P. Gavrilyuk, W. Hackbusch, B. N. Khoromskij, Hierarchical tensor-product approximation to the inverse and related operators for high-dimensional elliptic problems, Computing, 74, № 2, 131 – 157 (2005), https://doi.org/10.1007/s00607-004-0086-y

I. P. Gavrilyuk, V. L. Makarov, D. O. Sytnyk, V. B. Vasylyk, Exponentially convergent method for the m-point nonlocal problem for a first order differential equation in Banach space, Numer. Funct. Anal. and Optim., 31, № 1 – 3, 1 – 21 (2010), https://doi.org/10.1080/01630560903499019

V. B. Vasylyk, V. L. Makarov, Exponentially Convergent Method for the First-Order Differential Equation in a Banach Space with Integral Nonlocal Condition, Ukr. Mat. Zh., 66, № 8, 1029 – 1040 (2015).

V. B. Vasylyk, V. L. Makarov, D. O. Sytnyk, Eksponentsialno zbizhnyi metod dlia dyferentsialnoho rivniannia pershoho poriadku v banakhovomu prostori z neobmezhenym operatorom u nelokalnii umovi, Pratsi In-tu matematyky NAN Ukrainy, 12, № 5, 32 – 45 (2015).

D. Sytnyk, Parallel numerical method for nonlocal-in-time schr¨odinger equation, J. Coupled Systems and Multiscale Dynamics, № 2 – 4, 204 – 211 (2017).

V. L. Makarov, I. P. Gavrilyuk, V. B. Vasylyk, Eksponentsialno zbizhnyi metod dlia rozviazuvannia abstraktnoho intehro-dyferentsialnoho rivniannia z drobovym intehralom Khardi – Titchmarsha, Dop. NAN Ukrainy, № 1, 3 – 8 (2021).

G. H. Hardy, E.C. Titchmarsh, An integral equation, Proc. Cambridge Philosophical Soc., 28, № 2, 165 – 173 (1932).

F. Stenger, Numerical methods based on sinc and analytic functions, Springer Ser. Comput. Math., Springer-Verlag, New York (1993), https://doi.org/10.1007/978-1-4612-2706-9

How to Cite
Vasylyk, V. B., I. P. Gavrilyuk, and V. L. Makarov. “Exponentially Convergent Method for a Differential Equation With Fractional Derivative and Unbounded Operator Coefficient in Banach Space”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 74, no. 2, Feb. 2022, pp. 151 -63, doi:10.37863/umzh.v74i2.6984.
Research articles