Embedding theorems and maximal subsemigroups of some linear transformation semigroups with restricted range
Abstract
UDC 512.64
Let $V$ be a vector space and let $T(V)$ denote the semigroup (under composition) of all linear transformations from $V$ into $V$. For a fixed subspace $W$ of $V$, let $T(V,W)$ be the semigroup consisting of all linear transformations from $V$ into $W$. It is known that \[ F(V,W) =\{\alpha\in T(V,W): V\alpha\subseteq W\alpha\} \] is the largest regular subsemigroup of $T(V,W)$. In this paper, we prove that any regular semigroup $S$ can be embedded in $F(V,W)$ with $\dim(V) = |S^1|$ and $\dim(W) = |S|$, and determine all the maximal subsemigroups of $F(V,W)$ when $W$ is a finite dimensional subspace of $V$ over a finite field.
References
R. A. Bayramov, On the problem of completeness in a symmetric semigroup of finite degree, Diskret Analiz., 8, 3 – 26 (1966) (in Russian).
A. H. Clifford, G. B. Preston, The algebraic theory of semigroups, vol. 1, Math. Surveys Amer. Math. Soc. 7, Providence, RI (1961). DOI: https://doi.org/10.1090/surv/007.1/01
A. H. Clifford, G. B. Preston, The algebraic theory of semigroups, vol. 3, Math. Surveys Amer. Math. Soc. 7, Providence, RI (1967); https://doi.org/10.1007/BF02315965 DOI: https://doi.org/10.1090/surv/007.2/02
J. East, J. D. Michell, Y. P´eresse, Maximal subsemigroups of the semigroup of all mappings on an infinite set, Trans. Amer. Math. Soc., 367, № 3, 1911 – 1944 (2015); https://doi.org/10.1090/S0002-9947-2014-06110-2 DOI: https://doi.org/10.1090/S0002-9947-2014-06110-2
J. M. Howie, An introduction to semigroup theory, Acad. Press, London (1976).
T. W. Hungerford, Algebra, Springer-Verlag, New York (1974).
S. Mendes-Gon¸calves, R. P. Sullivan, Baer – Levi semigroups of linear transformations, Proc. Roy. Soc. Edinburgh Sect. A, 134A, № 3, 477 – 499 (2004); https://doi.org/10.1017/S0308210500003309 DOI: https://doi.org/10.1017/S0308210500003309
S. Nenthein, P. Youngkhong, Y. Kemprasit, Regular elements of some transformation semigroups, Pure Math. and Appl. (PU.M.A.), 16, № 3, 307 – 314 (2005).
S. Nenthein, Y. Kemprasit, Regular elements of some semigroups of linear transformations and matrices, Int. Math. Forum, 2, № 4, 155 – 166 (2007); https://doi.org/10.12988/imf.2007.07014 DOI: https://doi.org/10.12988/imf.2007.07014
S. Roman, Advanced linear algebra, 3rd ed., Grad. Texts Math., Springer (2008). DOI: https://doi.org/10.1007/978-0-387-72831-5
J. Sanwong, The regular part of a semigroup of transformations with restricted range, Semigroup Forum, 83, № 1, 134 – 146 (2011); https://doi.org/10.1007/s00233-011-9320-z DOI: https://doi.org/10.1007/s00233-011-9320-z
J. Sanwong, W. Sommanee, Regularity and Green’s relations on a semigroup of transformations with restricted range, Int. J. Math. and Math. Sci., Article ID 794013 (2008), 11 p.; https://doi.org/10.1155/2008/794013 DOI: https://doi.org/10.1155/2008/794013
W. Sommanee, The regular part of a semigroup of full transformations with restricted range: maximal inverse subsemigroups and maximal regular subsemigroups of its ideals, Int. J. Math. and Math. Sci., Article ID 2154745 (2018), 9 p.; https://doi.org/10.1155/2018/2154745 DOI: https://doi.org/10.1155/2018/2154745
W. Sommanee, K. Sangkhanan, The regular part of a semigroup of linear transformations with restricted range, J. Aust. Math. Soc., 103, № 3, 402 – 419 (2017); https://doi.org/10.1017/S144678871600080X DOI: https://doi.org/10.1017/S144678871600080X
W. Sommanee, J. Sanwong, Rank and idempotent rank of finite full transformation semigroups with restricted range, Semigroup Forum, 87, № 1, 230 – 242 (2013); https://doi.org/10.1007/s00233-013-9467-x DOI: https://doi.org/10.1007/s00233-013-9467-x
R. P. Sullivan, Embedding theorems for semigroups of generalised linear transformations, Southeast Asian Bull. Math., 36, № 4, 547 – 552 (2012).
R. P. Sullivan, Semigroups of linear transformations with restricted range, Bull. Aust. Math. Soc., 77, № 3, 441 – 453 (2008); https://doi.org/10.1017/S0004972708000385 DOI: https://doi.org/10.1017/S0004972708000385
J. S. V. Symons, Some results concerning a transformation semigroup, J. Aust. Math. Soc., 19, № 4, 413 – 425 (1975). DOI: https://doi.org/10.1017/S1446788700034455
H. Yang, X. Yang, Maximal subsemigroups of finite transformation semigroups $K(n, r)$, Acta Math. Sin. (Engl. Ser.), 20, № 3, 475 – 482 (2004); https://doi.org/10.1007/s10114-004-0367-6 DOI: https://doi.org/10.1007/s10114-004-0367-6
T. You, Maximal regular subsemigroups of certain semigroups of transformations, Semigroup Forum, 64, № 3, 91 – 396 (2002); https://doi.org/10.1007/s002330010117 DOI: https://doi.org/10.1007/s002330010117
Copyright (c) 2021 Worachead Sommanee
This work is licensed under a Creative Commons Attribution 4.0 International License.