Existence of nonnegative solutions for a fractional parabolic equation in the whole space

Authors

  • T. Kenzizi

Abstract

UDC 517.9
We study existence of nonnegative solutions for a parabolic problem $\dfrac{\partial u}{\partial t} = - (-\triangle)^{\frac{\alpha}{2}}u + \dfrac{c}{|x|^{\alpha}}u$ in $\mathbb{R}^{d}\times (0, T).$ Here $0<\alpha<\min(2,d),$ $(-\triangle)^{\frac{\alpha}{2}}$ is the fractional Laplacian on $\mathbb{R}^{d}$ and $\mathbb{R}^{d}$ and $u_{0}\in L^{2}(\mathbb{R}^{d}).$

Downloads

Published

25.08.2019

Issue

Section

Research articles

How to Cite

Kenzizi, T. “Existence of Nonnegative Solutions for a Fractional Parabolic Equation in the Whole Space”. Ukrains’kyi Matematychnyi Zhurnal, vol. 71, no. 8, Aug. 2019, pp. 1064-72, https://umj.imath.kiev.ua/index.php/umj/article/view/1498.