Boundedness of Riesz-type potential operators on variable exponent Herz – Morrey spaces
Abstract
We show the boundedness of the Riesz-type potential operator of variable order β(x) from the variable exponent Herz – Morrey spaces M˙Kα(⋅),λp1,q1(⋅)(Rn) into the weighted space M˙Kα(⋅),λp2,q2(⋅)(Rn,ω), where α(x)∈L∞(Rn)islog−Holdercontinuousbothattheoriginandatinfinity,\omega = (1+| x| ) \gamma (x)withsome\gamma (x) > 0,and1/q_1 (x) 1/q_2 (x) = \beta (x)/nwhenq_1 (x)isnotnecessarilyconstantatinfinity.Itisassumedthattheexponentq_1 (x)satisfiesthelogarithmiccontinuityconditionbothlocallyandatinfinityand1 < (q_1)_{\infty} \leq q_1(x) \leq (q_1)_+ < \infty, \;x \in \mathbb{R}$.Downloads
Published
25.09.2017
Issue
Section
Research articles
How to Cite
Wu, Jianglong. “Boundedness of Riesz-Type Potential Operators on Variable Exponent Herz – Morrey Spaces”. Ukrains’kyi Matematychnyi Zhurnal, vol. 69, no. 9, Sept. 2017, pp. 1187-9, https://umj.imath.kiev.ua/index.php/umj/article/view/1769.