Inequalities of Different Metrics for Differentiable Periodic Functions
Abstract
We prove the following sharp inequality of different metrics: ‖x‖q≤‖φr‖q(‖x‖p‖φr‖p)r+1/qr+1/p‖x(r)‖1/p−1/qr+1/p∞,q>p>0, for 2π -periodic functions x∈Lr∞ satisfying the condition L(x)p≤21/p‖x‖p, where L(x)p:=sup and φ_r is the Euler spline of order r. As a special case, we establish the Nikol’skii-type sharp inequalities for polynomials and polynomial splines satisfying the condition (A).Downloads
Published
25.02.2015
Issue
Section
Research articles
How to Cite
Kofanov, V. A. “Inequalities of Different Metrics for Differentiable Periodic Functions”. Ukrains’kyi Matematychnyi Zhurnal, vol. 67, no. 2, Feb. 2015, pp. 202–212, https://umj.imath.kiev.ua/index.php/umj/article/view/1974.