Jackson-Type Inequalities for the Special Moduli of Continuity on the Entire Real Axis and the Exact Values of Mean $ν$ - Widths for the Classes of Functions in the Space $L_2 (ℝ)$
Abstract
The exact values of constants are obtained in the space $L_2 (ℝ)$ for the Jackson-type inequalities for special moduli of continuity of the $k$ th order defined by the Steklov operator $S_h (f)$ instead of the translation operator $T_h (f)$ in the case of approximation by entire functions of exponential type $σ ∈ (0,∞)$. The exact values of the mean $ν$-widths (linear, Bernstein, and Kolmogorov) are also obtained for the classes of functions defined by the indicated characteristic of smoothness.Downloads
Published
25.06.2014
Issue
Section
Research articles
How to Cite
Vakarchuk, S. B. “Jackson-Type Inequalities for the Special Moduli of Continuity on the Entire Real Axis and the Exact Values of Mean $ν$ - Widths for the Classes of Functions in the Space $L_2 (ℝ)$”. Ukrains’kyi Matematychnyi Zhurnal, vol. 66, no. 6, June 2014, pp. 740–766, https://umj.imath.kiev.ua/index.php/umj/article/view/2175.