Truncation error bounds for branched continued fraction $\sum_{i_1=1}^N\frac{a_{i(1)}}{1}{\atop+}\sum_{i_2=1}^{i_1}\frac{a_{i(2)}}{1}{\atop+}\sum_{i_3=1}^{i_2}\frac{a_{i(3)}}{1}{\atop+}\ldots$

Abstract

UDC 517.5

The paper deals with the problem of estimating the error of approximation of a branched continued fraction, which is a generalization of a continued fraction. Using the method of fundamental inequalities, truncation error bounds for branched continued fraction $\sum_{i_1=1}^N\frac{a_{i(1)}}{1}{\atop+}\sum_{i_2=1}^{i_1}\frac{a_{i(2)}}{1}{\atop+}\sum_{i_3=1}^{i_2}\frac{a_{i(3)}}{1}{\atop+}\ldots,$ whose elements belong to some rectangular sets of a complex plane, are established. The obtained results have been applied to multidimensional $S$, $A$-fraction with independent variables.

References

Antonova T.M., Швидкість збіжності гіллястих ланцюгових дробів спеціального вигляду (Ukrainian) [[Shvidki`st` zbi`zhnosti` gi`llyastikh lanczyugovikh drobi`v speczi`al`nogo viglyadu]], Volins`kij matem. vi`sn. (1999), 6, p. 5-11

T. M. Antonova, D. I. Bodnar, Теорiя наближення функцiй та її застосування (Ukrainian) [[Teoriya nablizhennya funkczij ta yiyi zastosuvannya]], Praczi In-tu matematiki NAN Ukrayini, 31, 5 – 18 (2000)

T. M. Antonova, S. M. Vozna, Про один аналог методу фундаментальних нерiвностей для дослiдження збiжностi гiллястих ланцюгових дробiв спецiального вигляду (Ukrainian) [[Pro odin analog metodu fundamental`nikh nerivnostej dlya doslidzhennya zbizhnosti gillyastikh lanczyugovikh drobiv speczial`nogo viglyadu]], Visn. Nacz. un-tu „L`viv. politekhnika”. Ser.: fiz.-mat. nauki, 871, 5 – 12 (2017).

T. M. Antonova, O. M. Sus`, Про деякi послiдовностi множин рiвномiрної збiжностi двовимiрних неперервних дробiв (Ukrainian) [[Pro deyaki poslidovnosti mnozhin rivnomirnoyi zbizhnosti dvovimirnikh neperervnikhdrobiv]], Mat. metodi ta fiz.-mekh. polya, 58, No 1, 47 – 56 (2015)

O. Ye. Baran, Деякi областi збiжностi гiллястих ланцюгових дробiв спецiального вигляду (Ukrainian) [[Deyaki oblasti zbizhnosti gillyastikh lanczyugovikh drobiv speczial`nogo viglyadu]], Karpat. mat. publ., 5, № 1, 4 – 13 (2013).

D. I. Bodnar, Ветвящиеся цепные дроби (Ukrainian) [[Vetvyashhiesya czepny`e drobi]], Kiyiv: Nauk. dumka, Kiyiv (1986)

D. I. Bodnar, R. I. Dmitrishin, Багатовимiрнi приєднанi дроби з нерiвнозначними змiнними i кратнi степеневi ряди (Ukrainian) [[Bagatovimirni priyednani drobi z nerivnoznachnimi zminnimi i kratni stepenevi ryadi]], Ukr. mat. zhurn. 71, № 3, 325 – 339 (2019).

R. I. Dmitrishin, Двовимiрне узагальнення $qd$-алгоритму Рутисхаузера (Ukrainian) [[Dvovimirne uzagal`nennya $qd$-algoritmu Rutiskhauzera]], Mat. metodi ta fiz.-mekh. polya, 56,№ 4, 6 – 11 (2013).

R. I. Dmitrishin, Приєднанi гiллястi ланцюговi дроби з двома нерiвнозначними змiнними (Ukrainian) [[Priyednani gillyasti lanczyugovi drobi z dvoma nerivnoznachnimi zminnimi]], Ukr. mat. zhurn., 66, № 9, 1175 – 1184 (2014).

R. I. Dmitrishin, Про розвинення деяких функцiй у двовимiрний $g$-дрiб з нерiвнозначними змiнними (Ukrainian) [[Pro rozvinennya deyakikh funkczij u dvovimirnij $g$-drib z nerivnoznachnimi zminnimi, ]], Mat. metodi ta fiz.-mekh. polya, 53, № 4, 28 – 34 (2010).

T. M. Antonova, M. V. Dmytryshyn, S. M. Vozna, Some properties of approximants for branched continued fractions of the special form with positive and alternating-sign partial numerators, Carpathian Math. Publ., 10, № 1, 3 – 13 (2018) https://doi.org/10.15330/cmp.10.1.3-13

I. B. Bilanyk, A truncation error bound for some branched continued fractions of the special form, Mat. Stud., 52, № 2, 115 – 123 (2019)

I. B. Bilanyk, D. I. Bodnar, L. M. Byak, Representation of a quotient of solutions of a four-term linear recurrence relation in the form of a branched continued fraction, Carpathian Math. Publ., 11, № 1, 33 – 41 (2019) https://doi.org/10.15330/cmp.11.1.33-41

R. I. Dmytryshyn, Convergence of some branched continued fractions with independent variables, Mat. Stud., 47, № 2, 150 – 159 (2017) https://doi.org/10.15330/ms.47.2.150-159

R. I. Dmytryshyn, Multidimensional regular $C$-fraction with independent variables corresponding to formal multiple power series, Proc. Roy. Soc. Edinburgh Sect. A, 1 – 18 (2019), https://doi.org/10.1017/prm.2019.2.

R. I. Dmytryshyn, On some of convergence domains of multidimensional $S$-fractions with independent variables, Carpathian Math. Publ., 11, № № 1, 54 – 58 (2019) https://doi.org/10.15421/241803

R. I. Dmytryshyn, The two-dimensional g-fraction with independent variables for double power series, J. Approxim. Theory, 164, № 12, 1539 – 1520 (2012) https://doi.org/10.1016/j.jat.2012.09.002

W. B. Jones, W. J. Thron, Continued fractions: Analytic theory and applications, Reading, Addison-Wesley Pub. Co., Mass. xxix+428 pp. ISBN: 0-201-13510-8 (1980)

Published
15.07.2020
How to Cite
Antonova, T. M., and R. I. Dmytryshyn. “Truncation Error Bounds for Branched Continued Fraction $\sum_{i_1=1}^N\frac{a_{i(1)}}{1}{\atop+}\sum_{i_2=1}^{i_1}\frac{a_{i(2)}}{1}{\atop+}\sum_{i_3=1}^{i_2}\frac{a_{i(3)}}{1}{\atop+}\ldots$”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 72, no. 7, July 2020, pp. 877-85, doi:10.37863/umzh.v72i7.2342.
Section
Research articles