Lebesgue-type inequalities for the de la Valee-Poussin sums on sets of analytic functions

Authors

  • A. P. Musienko Iн-т математики НАН України, Київ
  • A. S. Serdyuk

Abstract

For functions from the sets C^{ψ}_{β} C and C^{ψ}_{β} L_s,\; 1 ≤ s ≤ ∞ generated by sequences ψ(k) > 0 satisfying the d’Alembert condition \lim_{k→∞}\frac{ψ(k + 1)}{ψ(k)} = q,\; q ∈ (0, 1), we obtain asymptotically unimprovable estimates for the deviations of de la Vallee Poussin sums in the uniform metric in terms of the best approximations of the (ψ, β)-derivatives of functions of this sort by trigonometric polynomials in the metrics of the spaces L_s. It is proved that the obtained estimates are unimprovable in some important functional subsets of C^{ψ}_{β} C and C^{ψ}_{β} L_s.

Published

25.04.2013

Issue

Section

Research articles

How to Cite

Musienko, A. P., and A. S. Serdyuk. “Lebesgue-Type Inequalities for the De La Valee-Poussin Sums on Sets of Analytic Functions”. Ukrains’kyi Matematychnyi Zhurnal, vol. 65, no. 4, Apr. 2013, pp. 522-37, https://umj.imath.kiev.ua/index.php/umj/article/view/2436.