Generalizations of -supplemented modules

Authors

  • A. Pancar Ondokuz Mayis Univ., Turkey
  • B. N. Türkmen

Abstract

We introduce -radical supplemented modules and strongly -radical supplemented modules (briefly, srs-modules) as proper generalizations of -supplemented modules. We prove that (1) a semilocal ring R is left perfect if and only if every left R-module is an -radical supplemented module; (2) a commutative ring R is an Artinian principal ideal ring if and only if every left R-module is a srs-module; (3) over a local Dedekind domain, every -radical supplemented module is a srs-module. Moreover, we completely determine the structure of these modules over local Dedekind domains.

Published

25.04.2013

Issue

Section

Research articles

How to Cite

Pancar, A., and B. N. Türkmen. “Generalizations of -Supplemented Modules”. Ukrains’kyi Matematychnyi Zhurnal, vol. 65, no. 4, Apr. 2013, pp. 555-64, https://umj.imath.kiev.ua/index.php/umj/article/view/2439.