Strongly alternative Dunford - Pettis subspaces of operator ideals
Abstract
Introducing the concept of strong alternative Dunford – Pettis property (strong DP1) for the subspace M of operator ideals U(X,Y) between Banach spaces X and Y, we show that M is a strong DP1 subspace if and only if all evaluation operators ϕx:M→Y та ψy∗ : \mathcal{M} → X^{*} are DP1 operators, where \phi_x(T) = T x та ψ_{y^{∗}} (T) = T^{∗}y^{∗} for x ∈ X, y^{∗} ∈ Y and T ∈ M. Some consequences related to the concept of alternative Dunford – Pettis property in subspaces of some operator ideals are obtained.Published
25.04.2013
Issue
Section
Short communications
How to Cite
Moshtaghioun, S. M. “Strongly Alternative Dunford - Pettis Subspaces of Operator Ideals”. Ukrains’kyi Matematychnyi Zhurnal, vol. 65, no. 4, Apr. 2013, pp. 588-93, https://umj.imath.kiev.ua/index.php/umj/article/view/2442.