Fourier cosine and sine transforms and generalized Lipschitz classes in uniform metric

Authors

  • B. I. Golubov Moscow Inst. Phys. and Technol. (State Univ.), Russia
  • S. S. Volosivets Saratov State Univ., Russia

Abstract

For functions $f \in L^1(\mathbb{R}_{+})$ with cosine (sine) Fourier transforms $\widehat{f}_c(\widehat{f}_s)$ in $L^1(\mathbb{R})$, we give necessary and sufficient conditions in terms of $\widehat{f}_c(\widehat{f}_s)$ for $f$ to belong to generalized Lipschitz classes $H^{\omega, m}$ and $h^{\omega, m}$. Conditions for the uniform convergence of the Fourier integral and for the existence of the Schwartz derivative are also obtained.

Published

25.05.2012

Issue

Section

Research articles

How to Cite

Golubov, B. I., and S. S. Volosivets. “Fourier Cosine and Sine Transforms and Generalized Lipschitz Classes in Uniform Metric”. Ukrains’kyi Matematychnyi Zhurnal, vol. 64, no. 5, May 2012, pp. 616-27, https://umj.imath.kiev.ua/index.php/umj/article/view/2602.