Lower bound in the Bernstein inequality for the first derivative of algebraic polynomials
Abstract
We prove that $\max |p′(x)|$, where $p$ runs over the set of all algebraic polynomials of degree not higher than $n ≥ 3$ bounded in modulus by 1 on [−1, 1], is not lower than \( {{\left( {n - 1} \right)} \mathord{\left/{\vphantom {{\left( {n - 1} \right)} {\sqrt {1 - {x^2}} }}} \right.} {\sqrt {1 - {x^2}} }} \) for all $x ∈ (−1, 1)$ such that \( \left| x \right| \in \bigcup\nolimits_{k = 0}^{\left[ {{n \mathord{\left/{\vphantom {n 2}} \right.} 2}} \right]} {\left[ {\cos \frac{{2k + 1}}{{2\left( {n - 1} \right)}}\pi, \cos \frac{{2k + 1}}{{2n}}\pi } \right]} \).Downloads
Published
25.05.2009
Issue
Section
Short communications
How to Cite
Podvysotskaya, A. I. “Lower Bound in the Bernstein Inequality for the First Derivative of Algebraic Polynomials”. Ukrains’kyi Matematychnyi Zhurnal, vol. 61, no. 5, May 2009, pp. 711-5, https://umj.imath.kiev.ua/index.php/umj/article/view/3053.