Lower bound in the Bernstein inequality for the first derivative of algebraic polynomials
Abstract
We prove that $\max |p′(x)|$, where $p$ runs over the set of all algebraic polynomials of degree not higher than $n ≥ 3$ bounded in modulus by 1 on [−1, 1], is not lower than \( {{\left( {n - 1} \right)} \mathord{\left/{\vphantom {{\left( {n - 1} \right)} {\sqrt {1 - {x^2}} }}} \right.} {\sqrt {1 - {x^2}} }} \) for all $x ∈ (−1, 1)$ such that \( \left| x \right| \in \bigcup\nolimits_{k = 0}^{\left[ {{n \mathord{\left/{\vphantom {n 2}} \right.} 2}} \right]} {\left[ {\cos \frac{{2k + 1}}{{2\left( {n - 1} \right)}}\pi, \cos \frac{{2k + 1}}{{2n}}\pi } \right]} \).
Published
25.05.2009
How to Cite
PodvysotskayaA. I. “Lower Bound in the Bernstein Inequality for the First Derivative of Algebraic Polynomials”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 61, no. 5, May 2009, pp. 711-5, https://umj.imath.kiev.ua/index.php/umj/article/view/3053.
Issue
Section
Short communications