Littlewood - Paley theorem on $L^{p(t)}(\mathbb{R}^n)$ spaces

Authors

  • T. S. Kopaliani

Abstract

We point out that when the Hardy - Littlewood maximal operator is bounded on the space $L^{p(t)}(\mathbb{R}^n),\quad 1 < a \leq p(t) \leq b < \infty,\quad t \in \mathbb{R}$, the well-known characterization of spaces $L^{p(t)}(\mathbb{R}^n),\quad 1 < p < \infty$, by the Littlewood - Paley theory extends to the space $L^{p(t)}(\mathbb{R}^n).$ We show that if $n > 1,$ the Littlewood -Paley operator is bounded on $L^{p(t)}(\mathbb{R}^n),\quad 1 < a \leq p(t) \leq b < \infty,\quad t \in \mathbb{R},$ if and only if $p(t) =$ const.

Published

25.12.2008

Issue

Section

Short communications

How to Cite

Kopaliani, T. S. “Littlewood - Paley Theorem on $L^{p(t)}(\mathbb{R}^n)$ Spaces”. Ukrains’kyi Matematychnyi Zhurnal, vol. 60, no. 12, Dec. 2008, pp. 1709 – 1715, https://umj.imath.kiev.ua/index.php/umj/article/view/3283.