Estimates for wavelet coefficients on some classes of functions

Authors

  • V. F. Babenko
  • S. A. Spector

Abstract

Let $ψ_m^D$ be orthogonal Daubechies wavelets that have $m$ zero moments and let $$W^k_{2, p} = \left\{f \in L_2(\mathbb{R}): ||(i \omega)^k \widehat{f}(\omega)||_p \leq 1\right\}, \;k \in \mathbb{N},$$. We prove that $$\lim_{m\rightarrow\infty}\sup\left\{\frac{|\psi^D_m, f|}{||(\psi^D_m)^{\wedge}||_q}: f \in W^k_{2, p} \right\} = \frac{\frac{(2\pi)^{1/q-1/2}}{\pi^k}\left(\frac{1 - 2^{1-pk}}{pk -1}\right)^{1/p}}{(2\pi)^{1/q-1/2}}.$$

Published

25.12.2007

Issue

Section

Research articles

How to Cite

Babenko, V. F., and S. A. Spector. “Estimates for Wavelet Coefficients on Some Classes of Functions”. Ukrains’kyi Matematychnyi Zhurnal, vol. 59, no. 12, Dec. 2007, pp. 1594–1600, https://umj.imath.kiev.ua/index.php/umj/article/view/3415.