Estimates for wavelet coefficients on some classes of functions
Abstract
Let $ψ_m^D$ be orthogonal Daubechies wavelets that have $m$ zero moments and let $$W^k_{2, p} = \left\{f \in L_2(\mathbb{R}): ||(i \omega)^k \widehat{f}(\omega)||_p \leq 1\right\}, \;k \in \mathbb{N},$$. We prove that $$\lim_{m\rightarrow\infty}\sup\left\{\frac{|\psi^D_m, f|}{||(\psi^D_m)^{\wedge}||_q}: f \in W^k_{2, p} \right\} = \frac{\frac{(2\pi)^{1/q-1/2}}{\pi^k}\left(\frac{1 - 2^{1-pk}}{pk -1}\right)^{1/p}}{(2\pi)^{1/q-1/2}}.$$Downloads
Published
25.12.2007
Issue
Section
Research articles
How to Cite
Babenko, V. F., and S. A. Spector. “Estimates for Wavelet Coefficients on Some Classes of Functions”. Ukrains’kyi Matematychnyi Zhurnal, vol. 59, no. 12, Dec. 2007, pp. 1594–1600, https://umj.imath.kiev.ua/index.php/umj/article/view/3415.