On Artinian rings satisfying the Engel condition
Abstract
Let R be an Artinian ring, not necessarily with a unit element, and let R∘ be the group of all invertible elements of R under the operation a∘b=a+b+ab. We prove that R∘ is a nilpotent group if and only if it is an Engel group and the ring R modulo its Jacobson radical is commutative. In particular, the group R∘ is nilpotent if it is weakly nilpotent or n-Engel for some positive integer n. We also establish that R is a strictly Lie-nilpotent ring if and only if R is an Engel ring and R modulo its Jacobson radical is commutative.Нехай R — артінове кільце, необов'язково з одиницею, i R∘ — група оборотних елементів кільця R відносно операції a∘b=a+b+ab.
Downloads
Published
25.09.2006
Issue
Section
Short communications
How to Cite
Evstaf’ev, R. Yu. “On Artinian Rings Satisfying the Engel Condition”. Ukrains’kyi Matematychnyi Zhurnal, vol. 58, no. 9, Sept. 2006, pp. 1264–1270, https://umj.imath.kiev.ua/index.php/umj/article/view/3527.