A Presentation of the Automorphism Group of the Two-Generator Free Metabelian and Nilpotent Group of Class $c$

  • Lin Wan
  • S. Gupta

Abstract

We determine the structure of IA(G)/Inn(G) by giving a set of generators, and showing that IA(G)/Inn(G) is a free abelian group of rank (c − 2)(c + 3)/2. Here G = M 2, c = 〈 x, y〉, c ≥ 2, is the free metabelian nilpotent group of class c.
Published
25.06.2002
How to Cite
WanL., and GuptaS. “A Presentation of the Automorphism Group of the Two-Generator Free Metabelian and Nilpotent Group of Class $c$”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 54, no. 6, June 2002, pp. 771-9, https://umj.imath.kiev.ua/index.php/umj/article/view/4115.
Section
Research articles