On the Binomial Asymptotics of an Entire Dirichlet Series
Abstract
Let M(σ) be the maximum modulus and let μ(σ) be the maximum term of an entire Dirichlet series with nonnegative exponents λ n increasing to ∞. We establish a condition for λ n under which the relations lnμ(σ,F)⩽Φ1(σ)+(1+o(1))τΦ2(σ)(σ→+∞) and lnM(σ,F)⩽Φ1(σ)+(1+(1))τΦ2(σ)(σ→+∞) are equivalent under certain conditions on the functions Φ1 and Φ2.Downloads
Published
25.04.2001
Issue
Section
Research articles
How to Cite
Sheremeta, M. M. “On the Binomial Asymptotics of an Entire Dirichlet Series”. Ukrains’kyi Matematychnyi Zhurnal, vol. 53, no. 4, Apr. 2001, pp. 542-9, https://umj.imath.kiev.ua/index.php/umj/article/view/4275.