On Interpolation Sequences of One Class of Functions Analytic in the Unit Disk

Authors

  • B. V. Vynnyts’kyi
  • I. B. Sheparovych

Abstract

We establish a criterion for the existence of a solution of the interpolation problem f n ) = b n in the class of functions f analytic in the unit disk and satisfying the relation $$\left( {\exists {\tau }_{1} \in \left( {0;1} \right)} \right)\;\left( {\exists c_1 >0} \right)\;\left( {\forall z,\left| z \right| < 1} \right):\;\left| {f\left( z \right)} \right| \leqslant \exp \left( {c_1 \gamma ^{{\tau }_{1} } \left( {\frac{{c_1 }}{{1 - \left| z \right|}}} \right)} \right),$$ where γ: [1; +∞) → (0; +∞) is an increasing function such that the function lnγ(t) is convex with respect to lnt on the interval [1; +∞) and lnt = o(lnγ(t)), t → ∞.

Published

25.07.2001

Issue

Section

Research articles

How to Cite

Vynnyts’kyi, B. V., and I. B. Sheparovych. “On Interpolation Sequences of One Class of Functions Analytic in the Unit Disk”. Ukrains’kyi Matematychnyi Zhurnal, vol. 53, no. 7, July 2001, pp. 879-86, https://umj.imath.kiev.ua/index.php/umj/article/view/4309.