On Semiscalar and Quasidiagonal Equivalences of Matrices

Authors

  • B. Z. Shavarovskyy Iн-т прикл. пробл. механіки і математики НАН України, Львів

Abstract

For a certain class of polynomial matrices A(x), we consider transformations S A(x) R(x) with invertible matrices S and R(x), i.e., the so-called semiscalarly equivalent transformations. We indicate necessary and sufficient conditions for this type of equivalence of matrices. We introduce the notion of quasidiagonal equivalence of numerical matrices. We establish the relationship between the semiscalar and quasidiagonal equivalences and the problem of matrix pairs.

Published

25.10.2000

Issue

Section

Short communications

How to Cite

Shavarovskyy, B. Z. “On Semiscalar and Quasidiagonal Equivalences of Matrices”. Ukrains’kyi Matematychnyi Zhurnal, vol. 52, no. 10, Oct. 2000, pp. 1435-40, https://umj.imath.kiev.ua/index.php/umj/article/view/4550.