A critical case of stability of one quasilinear difference equation of the second order

Authors

  • I. E. Vitrychenko

Abstract

We obtain sufficient conditions for the Perron stability of the trivial solution of a real difference equation of the form $$y_{n + 1} - 2\lambda _n y_n + y_{n - 1} = F(n,y_n ,\Delta y_{n - 1} ), n \in N$$ where \(y_n \in \left] { - 1,1} \right[,\left| {F(n,y_n ,\Delta y_{n - 1} )} \right| \le L_n \left( {\left| {y_n \left| + \right|\Delta y_{n - 1} } \right|} \right)^{1 + \alpha } ,L_n \ge 0\) and \(\alpha \in \left] {0, + \infty } \right[\) . The resuits obtained are valid for the case where \(\left| {\lambda _n } \right| = 1 + o(1), n \to + \infty \) .

Published

25.12.1999

Issue

Section

Research articles

How to Cite

Vitrychenko, I. E. “A Critical Case of Stability of One Quasilinear Difference Equation of the Second Order”. Ukrains’kyi Matematychnyi Zhurnal, vol. 51, no. 12, Dec. 1999, pp. 1593–1603, https://umj.imath.kiev.ua/index.php/umj/article/view/4764.