On the regularity of the growth of the modulus and argument of an entire function in the metric of $L^p [0, 2π]$

Authors

  • R. Z. Kalinets
  • Yu. A. Koval’chuk

Abstract

Under sufficiently general assumptions, we describe sets of entire functions $f$, sets of growing functions $λ$, and sets of complex-valued functions $H$ from $L^p [0, 2π]$, $p ∈ [1, + ∞]$, for which $$\left\{ {\frac{1}{{2\pi }}\int\limits_0^{2\pi } {|\log f(re^{i\theta } ) - \lambda (r)H(\theta )|^p } d\theta } \right\}^{1/p} = o(\lambda (r)),r \to \infty.$$

Published

25.07.1998

Issue

Section

Research articles

How to Cite

Kalinets, R. Z., and Yu. A. Koval’chuk. “On the Regularity of the Growth of the Modulus and Argument of an Entire Function in the Metric of $L^p [0, 2π]$”. Ukrains’kyi Matematychnyi Zhurnal, vol. 50, no. 7, July 1998, pp. 889-96, https://umj.imath.kiev.ua/index.php/umj/article/view/4869.