Conditions of solvability of quasilinear periodic boundary-value problems for hyperbolic equations of the second order

  • Yu. A. Mitropolskiy
  • N. H. Khoma
  • G. P. Khoma

Abstract

On the basis of properties of the Vejvoda-Shtedry operator, we obtain solvability conditions for the 2π-periodic problem $$u_{tt} - u_{xx} = F\left[ {u,u_t } \right], u\left( {0,t} \right) = u\left( {\pi ,t} \right) = 0, u\left( {x,t + 2\pi } \right) = u\left( {x,t} \right)$$ .
Published
25.06.1998
How to Cite
MitropolskiyY. A., KhomaN. H., and KhomaG. P. “Conditions of Solvability of Quasilinear Periodic Boundary-Value Problems for Hyperbolic Equations of the Second Order”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 50, no. 6, June 1998, pp. 818–821, https://umj.imath.kiev.ua/index.php/umj/article/view/4892.
Section
Research articles