On inequalities for norms of intermediate derivatives on a finite interval

Authors

  • V. F. Babenko
  • V. A. Kofanov
  • S. A. Pichugov Днепропетр. нац. ун-т ж.-д. трансп.

Abstract

For functionsf which have an absolute continuous (n−1)th derivative on the interval [0, 1], it is proved that, in the case ofn>4, the inequality f(n2)4n2(n1)!f+f(n)/2 holds with the exact constant 4 n−2(n−1)!.

Published

25.01.1995

Issue

Section

Short communications

How to Cite

Babenko, V. F., et al. “On Inequalities for Norms of Intermediate Derivatives on a Finite Interval”. Ukrains’kyi Matematychnyi Zhurnal, vol. 47, no. 1, Jan. 1995, pp. 105–107, https://umj.imath.kiev.ua/index.php/umj/article/view/5387.