Dissipative Dirac operator with general boundary conditions on time scales
Abstract
UDC 517.9
In this paper, we consider the symmetric Dirac operator on bounded time scales. With general boundary conditions, we describe extensions (dissipative, accumulative, self-adjoint and the other) of such symmetric operators. We construct a self-adjoint dilation of dissipative operator. Hence, we determine the scattering matrix of dilation. Later, we construct a functional model of this operator and define its characteristic function. Finally, we prove that all root vectors of this operator are complete.
References
Lax, Peter D.; Phillips, Ralph S. Scattering theory, Pure and Applied Mathematics, Vol. 26, Academic Press, New York-London (1967).
Sz.-Nagy, Béla; Foiaş, Ciprian. Analyse harmonique des opérateurs de l'espace de Hilbert (French). Masson et Cie, Paris; Akadémiai Kiadó, Budapest (1967). https://doi.org/10.1002/zamm.19680480724 DOI: https://doi.org/10.1002/zamm.19680480724
Allahverdiev, Bilender P. Spectral problems of nonselfadjoint 1D singular Hamiltonian systems. Taiwanese J. Math. 17, no. 5, 1487–1502 (2013). https://doi.org/10.11650/tjm.17.2013.2734 DOI: https://doi.org/10.11650/tjm.17.2013.2734
Allahverdiev, Bilender P. Extensions, dilations and functional models of Dirac operators. Integral Equations Operator Theory 51, no. 4, 459–475 (2005). https://doi.org/10.1007/s00020-003-1241-0 DOI: https://doi.org/10.1007/s00020-003-1241-0
Allahverdiev, Bilender P. Spectral analysis of dissipative Dirac operators with general boundary conditions. J. Math. Anal. Appl. 283, no. 1, 287–303 (2003). https://doi.org/10.1016/s0022-247x(03)00293-2 DOI: https://doi.org/10.1016/S0022-247X(03)00293-2
Naĭmark, M. A. Линейные дифференциальные операторы (Russian), [Linear differential operators] Second edition, revised and augmented. With an appendix by V. È. Ljance, Nauka, Moscow (1969), 526 pp.
Gorbachuk, V. I.; Gorbachuk, M. L. Granichnye zadachi dlya differentsialʹno-operatornykh uravneniĭ (Russian), [Boundary value problems for operator-differential equations], Naukova Dumka, Kiev (1984), 284 pp. https://doi.org/10.1007/978-94-011-3714-0_2 DOI: https://doi.org/10.1007/978-94-011-3714-0_2
Kuzhel, A. Characteristic functions and models of nonselfadjoint operators, Mathematics and its Applications 349, Kluwer Academic Publishers Group, Dordrecht (1996), x+273 pp. ISBN: 0-7923-3879-0
Pavlov, B. S. Self-adjoint dilation of a dissipative Schrödinger operator and eigenfunction expansion, Funct. Anal. and Appl. 98, 172–173 (1975). DOI: https://doi.org/10.1007/BF01075465
Pavlov, B. S. Self-adjoint dilation of a dissipative Schrödinger operator and its resolution in terms of eigenfunctions, Math. USSR Sbornik 31, no. 4, 457–478 (1977). DOI: https://doi.org/10.1070/SM1977v031n04ABEH003716
Pavlov, B. S. Dilation theory and spectral analysis of nonselfadjoint differential operators (Russian), Mathematical programming and related questions (Proc. Seventh Winter School, Drogobych, 1974), Theory of operators in linear spaces, (Russian), pp. 3–69, Central. Èkonom. Mat. Inst. Akad. Nauk SSSR, Moscow (1976); English transl.: Transl. II. Ser., Amer. Math. Soc. 115, 103–142 (1981). https://doi.org/10.1090/trans2/115/06
Ginzburg, Yu. P.; Talyush, N. A. Exceptional sets of analytic matrix-functions, contracting and dissipative operators (Russian), Izv. Vyssh. Uchebn. Zaved. Mat., no. 8, 9–14 (1984), 82.
Ronkin, L. I. Введение в теорию целых функций многих переменных (Russian), [Introduction to the theory of entire functions of several variables], Nauka, Moscow (1971), 430 pp.
Weidmann, Joachim. Spectral theory of ordinary differential operators. Lecture Notes in Mathematics 1258, Springer-Verlag, Berlin (1987), vi+303 pp. ISBN: 3-540-17902-X. https://doi.org/10.1007/bfb0077960 DOI: https://doi.org/10.1007/BFb0077960
Hilger, S. Ein Maßkettenkalkül mit Anwendung auf Zentrumsmannigfaltigkeiten (Ph. D. Thesis), Univ. Würzburg (1988).
Anderson, Douglas R.; Guseinov, Gusein Sh.; Hoffacker, Joan. Higher-order self-adjoint boundary-value problems on time scales, J. Comput. Appl. Math. 194, no. 2, 309–342 (2006). https://doi.org/10.1016/j.cam.2005.07.020 DOI: https://doi.org/10.1016/j.cam.2005.07.020
Atici, F. Merdivenci; Guseinov, G. Sh. On Green's functions and positive solutions for boundary value problems on time scales. Dynamic equations on time scales, J. Comput. Appl. Math. 141, no. 1-2, 75–99 (2002). https://doi.org/10.1016/S0377-0427(01)00437-X DOI: https://doi.org/10.1016/S0377-0427(01)00437-X
Bohner, Martin; Peterson, Allan. Dynamic equations on time scales. An introduction with applications. Birkhäuser Boston, Inc., Boston, MA (2001), x+358 pp. ISBN: 0-8176-4225-0. https://link.springer.com/book/10.1007%2F978-1-4612-0201-1
Bohner, Martin; Peterson, Allan (Eds.), Advances in dynamic equations on time scales, Birkhäuser, Boston (2003). DOI: https://doi.org/10.1007/978-0-8176-8230-9
Guseinov, Gusein Sh. Self-adjoint boundary value problems on time scales and symmetric Green's functions, Turkish J. Math. 29, no. 4, 365–380 (2005).
Lakshmikantham, V.; Sivasundaram, S.; Kaymakcalan, B. Dynamic systems on measure chains. Mathematics and its Applications 370. Kluwer Academic Publishers Group, Dordrecht (1996), x+285 pp. ISBN: 0-7923-4116-3. https://doi.org/10.1007/978-1-4757-2449-3 DOI: https://doi.org/10.1007/978-1-4757-2449-3
Levitan, B. M.; Sargsjan, I. S. Sturm–Liouville and Dirac operators, Translated from the Russian, Mathematics and its Applications (Soviet Series) 59, Kluwer Academic Publishers Group, Dordrecht (1991), xii+350 pp. ISBN: 0-7923-0992-8. https://doi.org/10.1007/978-94-011-3748-5 DOI: https://doi.org/10.1007/978-94-011-3748-5
Thaller, Bernd. The Dirac equation, Texts and Monographs in Physics, Springer-Verlag, Berlin (1992), xviii+357 pp. ISBN: 3-540-54883-1
Rynne, Bryan P. $L^2$ spaces and boundary value problems on time-scales, J. Math. Anal. Appl. 328, no. 2, 1217–1236 (2007).
Gulsen, Tuba; Yilmaz, Emrah. Spectral theory of Dirac system on time scales, Appl. Anal. 96, no. 16, 2684–2694 (2017). https://doi.org/10.1080/00036811.2016.1236923 DOI: https://doi.org/10.1080/00036811.2016.1236923
Guseinov, Gusein Sh. An expansion theorem for a Sturm–Liouville operator on semi-unbounded time scales, Adv. Dyn. Syst. Appl. 3, no. 1, 147–160 (2008). http://campus.mst.edu/adsa/contents/v3n1p11.pdf
Guseinov, Gusein Sh. Eigenfunction expansions for a Sturm–Liouville problem on time scales, Int. J. Difference Equ. 2, no. 1, 93–104 (2007). http://campus.mst.edu/ijde/contents/v2n1p8.pdf
Huseynov, Adil; Bairamov, Elgiz. On expansions in eigenfunctions for second order dynamic equations on time scales, Nonlinear Dyn. Syst. Theory 9, no. 1, 77–88 (2009). http://www.e-ndst.kiev.ua/v9n1/7(26)a.pdf
Allahverdiev, Bilender P.; Eryilmaz, Aytekin; Tuna, Hüseyin. Dissipative Sturm–Liouville operators with a spectral parameter in the boundary condition on bounded time scales, Electron. J. Differential Equations, Paper No. 95 (2017), 13 pp. https://ejde.math.txstate.edu/Volumes/2017/95/allahverdiev.pdf
Allakhverdiev, Bilender P. Extensions of symmetric singular second-order dynamic operators on time scales, Filomat 30, no. 6, 1475–1484 (2016). https://doi.org/10.2298/fil1606475a DOI: https://doi.org/10.2298/FIL1606475A
Allahverdiev, Bilender P. Non-self-adjoint singular second-order dynamic operators on time scale, Math. Methods Appl. Sci. 42, no. 1, 229–236 (2019). https://doi.org/10.1002/mma.5338 DOI: https://doi.org/10.1002/mma.5338
Allahverdiev, Bilender P.; Tuna, Hüseyin. Spectral analysis of singular Sturm–Liouville operators on time scales, Ann. Univ. Mariae Curie-Skłodowska Sect. A 72, no. 1, 1–11 (2018). https://doi.org/10.17951/a.2018.72.1.1-11 DOI: https://doi.org/10.17951/a.2018.72.1.1-11
Tuna, Hüseyin. Dissipative Sturm–Liouville operators on bounded time scales. Mathematica 56(79), no. 1, 80–92 (2014).
Tuna, Hüseyin. Completeness of the rootvectors of a dissipative Sturm–Liouville operators on time scales, Appl. Math. Comput. 228, 108–115 (2014). https://doi.org/10.1016/j.amc.2013.11.072 DOI: https://doi.org/10.1016/j.amc.2013.11.072
Tuna, Hüseyin. Completeness theorem for the dissipative Sturm–Liouville operator on bounded time scales, Indian J. Pure Appl. Math. 47, no. 3, 535–544 (2016). https://doi.org/10.1007/s13226-016-0196-1 DOI: https://doi.org/10.1007/s13226-016-0196-1
Tuna, Hüseyin; Özek, Mehmet Afşin. The one-dimensional Schrödinger operator on bounded time scales, Math. Methods Appl. Sci. 40, no. 1, 78–83 (2017). https://doi.org/10.1002/mma.3966 DOI: https://doi.org/10.1002/mma.3966
Huseynov, Adil. Limit point and limit circle cases for dynamic equations on time scales. Hacet. J. Math. Stat. 39, no. 3, 379–392 (2010). http://www.hjms.hacettepe.edu.tr/uploads/8be9fcb8-9174-4966-a162-51221942b475.pdf
Özkan, A. S. Parameter dependent Dirac systems on time scales, Cumhuriyet Sci. J. 39, no. 4, 864–870 (2018). https://doi.org/10.17776/csj.471958 DOI: https://doi.org/10.17776/csj.471958
This work is licensed under a Creative Commons Attribution 4.0 International License.