Strict quasicomplements and the operators of dense imbedding
Abstract
A quasicomplement М ofasubspace N of a Banach space X is called strict if M does not contain an infinite-dimensional subspace M1, such that the linear manifold N+M1, is closed. It is proved that if X is separable, then N always has a strict quasicomplement. We study the properties of the dense imbedding operator restricted to infinite-dimensional closed subspaces of the space, where it is defined.Downloads
Published
25.06.1994
Issue
Section
Short communications
How to Cite
Shevchik, V. V. “Strict Quasicomplements and the Operators of Dense Imbedding”. Ukrains’kyi Matematychnyi Zhurnal, vol. 46, no. 6, June 1994, pp. 789–792, https://umj.imath.kiev.ua/index.php/umj/article/view/5710.