A note on units in $\mathbb{F}_q SL(2, \mathbb{Z}_3)$

  • S. Maheshwari KIET Group of Institutions Delhi-NCR, Ghaziabad, India
  • R. K. Sharma Indian Inst. Technology Delhi, India
Keywords: Group Algebra, Unit Group, Finite Field

Abstract

UDC 512.5

Let $R$ be a ring, and $ SL(2,R)$ be the special linear group of $2\times2$ matrices with determinant $1$ over $R$.
We obtain the Wedderburn decomposition of
$\dfrac{\mathbb{F}_q SL(2,\mathbb{Z}_3)}{J(\mathbb{F}_q SL(2,\mathbb{Z}_3))}$ and show that $ 1+J(\mathbb{F}_q SL(2,\mathbb{Z}_3))$ is a non-Abelian group, where $\mathbb{F}_q$ is a finite field with $q = p^k$ elements of characteristic $2$ and $3.$

 

References

L. Creedon, J. Gildea, The structure of the unit group of the group algebra $ F_{2^k}D_8$, Canad. Math. Bull., 54, 237 – 243 (2011), https://doi.org/10.4153/CMB-2010-098-5

C. W. Curtis, I. Reiner, Methods of representation theory, vol. I, Wiley-Intersci., New York (1981).

R. A. Ferraz, Simple components of the center of $FG/J(FG)$, Commun. Algebra, 36, № 9, 3191 – 3199 (2008), https://doi.org/10.1080/00927870802103503

J. Gildea, The structure of the unit group of the group algebra $F_{2^k}A_4$, Czechoslovak Math. J., 61, № 136, 531 – 539 (2011), https://doi.org/10.1007/s10587-011-0071-5

J. Gildea, F. Monaghan, Units of some group algebras of groups of order 12 over any finite field of characteristic 3, Algebra and Discrete Math., 11, 46 – 58 (2011).

T. Hurley, Group rings and ring of matrices, Int. J. Pure and Appl. Math., 31, № 3, 319 – 335 (2006).

T. Hurley, Convolutional codes from units in matrix and group rings, Int. J. Pure and Appl. Math., 50, № 3, 431 – 463 (2009).

G. Karpilvosky, The Jacobson radical of group algebras, North-Holland, Amsterdam (1987).

M. Khan, R. K. Sharma, J. B. Srivastava, The unit group of $FS_4$, Acta Math. Hungar., 118, № 1 – 2, 105 – 113 (2008), https://doi.org/10.1007/s10474-007-6169-4

R. Lidl, H. Niederreiter, Introduction to finite fields and their applications, Cambridge Univ. Press, New York (1986).

S. Maheshwari, R. K. Sharma, The unit group of group algebra $F_qSL(2, Z_3)$, J. Algebra Comb. Discrete Struct. and Appl., 3, № 1, 1 – 6 (2016), https://doi.org/10.13069/jacodesmath.83854

N. Makhijani, Units in finite group algebras, Ph.D. thesis, IIT Delhi (2014).

N. Makhijani, R. K. Sharma, J. B. Srivastava, A note on units in $F_{p^m}D_{2p^n}$, Acta Math. Acad. Paedagog. Nyhazi. ´(N. S.), 30, 17 – 25 (2014).

N. Makhijani, R. K. Sharma, J. B. Srivastava, The unit group of $F_q[D_{30}]$, Serdica Math. J., 41, 185 – 198 (2015).

N. Makhijani, R. K. Sharma, J. B. Srivastava, A note on the structure of $F_{p^k}A_5/J(F_{p^k}A_5)$, Acta Sci. Math. (Szeged), 82, 29 – 43, (2016), https://doi.org/10.14232/actasm-014-311-2

C. P. Milies, S. K. Sehgal, An introduction to group rings, Kluwer Acad. Publ. (2002), https://doi.org/10.1007/978-94-010-0405-3

F. Monaghan, Units of some group algebras of non-abelian groups of order 24 over any finite field of characteristic 3, Int. Electron. J. Algebra, 12, 133 – 161 (2012).

S. Perlis, G. L. Walker, Abelian group algebras of finite order, Trans. Amer. Math. Soc., 68, № 3, 420 – 426 (1950), https://doi.org/10.2307/1990406

R. K. Sharma, J. B. Srivastava, M. Khan, The unit group of $FA_4$ , Publ. Math. Debrecen, 71, 1 – 6 (2006).

R. K. Sharma, J. B. Srivastava, M. Khan, The unit group of BbbF S3 , Acta Math. Acad. Paedagog. Nyhazi. (N. S.), ´ 23, № 2, 129 – 142 (2007).

R. K. Sharma, Pooja Yadav, The unit group of $Z_pQ_8$, Algebras Groups and Geom., 24, 425 – 430 (2008).

G. Tang, Y. Wei, Y. Li, Unit groups of group algebras of some small groups, Czechoslovak Math. J., 64, № 1, 149 – 157 (2014), https://doi.org/10.1007/s10587-014-0090-0

Published
18.08.2021
How to Cite
Maheshwari S., and Sharma R. K. “A Note on Units in $\mathbb{F}_q SL(2, \mathbb{Z}_3)$”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 73, no. 8, Aug. 2021, pp. 1147 -52, https://umj.imath.kiev.ua/index.php/umj/article/view/588.
Section
Short communications