Fractional trapezium-like inequalities involving generalized relative semi-$(m, h_1, h_2 )$-preinvex mappings on an $m$-invex set

  • T. S. Du College Sci., China Three Gorges Univ. and Three Gorges Math. Res. Center, Yichang, China
  • C. Y. Luo College Sci., China Three Gorges Univ., Yichang, China
  • Z. Z. Huang College Sci., China Three Gorges Univ., Yichang, China
  • A. Kashuri University “Ismail Qemali”, Vlora, Albania
Keywords: Hermite-Hadamard’s inequality, Riemann-Liouville fractional integrals, relative semi-$(m, h_1, h_2)$-preinvex functions

Abstract

UDC 517.5

The authors derive a fractional integral equality concerning twice differentiable mappings defined on $m$-invex set. By using this identity, the authors obtain new estimates on generalization of trapezium-like inequalities for mappings whose second order derivatives are generalized relative semi-$(m, h_1, h_2)$-preinvex via fractional integrals. We also discuss some new special cases which can be deduced from our main results.

References

M. U. Awan, M. A. Noor, M. V. Mihai, K. I. Noor, Two point trapezoidal like inequalities involving hypergeometric functions , Filomat, 31, № 8, 2281 – 2292 (2017), https://doi.org/10.2298/fil1708281a DOI: https://doi.org/10.2298/FIL1708281A

F. X. Chen, Extensions of the Hermite – Hadamard inequality for convex functions via fractional integrals , J. Math. Inequal., 10, № 1, 75 – 81 (2016), https://doi.org/10.7153/jmi-10-07 DOI: https://doi.org/10.7153/jmi-10-07

X. S. Chen, Some properties of semi-$E$-convex functions , J. Math. Anal. Appl., 275, № 1, 251 – 262 (2002), https://doi.org/10.1016/S0022-247X(02)00325-6 DOI: https://doi.org/10.1016/S0022-247X(02)00325-6

S. S. Dragomir, Integral inequalities of the Hermite – Hadamard type for K-bounded norm-convex mappings , Ukrainian Math. J., 68, № 10, 1530 – 1551 (2017), https://doi.org/10.1007/s11253-017-1311-0 DOI: https://doi.org/10.1007/s11253-017-1311-0

T. S. Du, J. G. Liao, Y. J. Li, Properties and integral inequalities of Hadamard – Simpson type for the generalized $(s,m)$-preinvex functions , J. Nonlinear Sci. Appl., 9, № 5, 3112 – 3126 (2016), https://doi.org/10.22436/jnsa.009.05.102 DOI: https://doi.org/10.22436/jnsa.009.05.102

T. S. Du, Y. J. Li, Z. Q. Yang, A generalization of Simpson’s inequality via differentiable mapping using extended $(s,m)$-convex functions , Appl. Math. Comput., 293, 358 – 369 (2017), https://doi.org/10.1016/j.amc.2016.08.045 DOI: https://doi.org/10.1016/j.amc.2016.08.045

S.-R. Hwang, K.-L. Tseng, K.-C. Hsu, New inequalities for fractional integrals and their applications , Turkish J. Math., 40, № 3, 471 – 486 (2016), https://doi.org/10.3906/mat-1411-61 DOI: https://doi.org/10.3906/mat-1411-61

M. Iqbal, M. I. Bhatti, K. Nazeer, Generalization of inequalities analogous to Hermite – Hadamard inequality via fractional integrals , Bull. Korean Math. Soc., 52, № 3, 707 – 716 (2015), https://doi.org/10.4134/BKMS.2015.52.3.707 DOI: https://doi.org/10.4134/BKMS.2015.52.3.707

˙I. ˙İşcan, S. H. Wu, Hermite – Hadamard type inequalities for harmonically convex functions via fractional integrals , Appl. Math. Comput., 238, 237 – 244 (2014), https://doi.org/10.1016/j.amc.2014.04.020 DOI: https://doi.org/10.1016/j.amc.2014.04.020

A. Kashuri, R. Liko, Generalizations of Hermite – Hadamard and Ostrowski type inequalities for ${rm MT}_m$-preinvex functions , Proyecciones, 36, № 1, 45 – 80 (2017), https://doi.org/10.4067/S0716-09172017000100004 DOI: https://doi.org/10.4067/S0716-09172017000100004

M. A. Khan, T. Ali, S. S. Dragomir, Hermite – Hadamard type inequalities for conformable fractional integrals , Rev. R. Acad. Cienc. Exactas F´ıs. Nat. Ser. A Math., (2017), https://doi.org/10.1007/s13398-017-0408-5. DOI: https://doi.org/10.1007/s13398-017-0408-5

M. A. Latif, On some new inequalities of Hermite – Hadamard type for functions whose derivatives are s-convex in the second sense in the absolute value , Ukr. Math. J., 67, № 10, 1552 – 1571 (2016), https://doi.org/10.1007/s11253-016-1172-y DOI: https://doi.org/10.1007/s11253-016-1172-y

M. Matłoka, Some inequalities of Hadamard type for mappings whose second derivatives are $h$-convex via fractional integrals , J. Fract. Calc. and Appl., 6, № 1, 110 – 119 (2015).

M. A. Noor, G. Cristescu, M. U. Awan, Generalized fractional Hermite – Hadamard inequalities for twice differentiable $s$-convex functions , Filomat, 29, № 4, 807 – 815 (2015), https://doi.org/10.2298/FIL1504807N DOI: https://doi.org/10.2298/FIL1504807N

M. A. Noor, M. U. Awan, Some integral inequalities for two kinds of convexities via fractional integrals , Transilv. J. Math. and Mech., 5, № 2, 129 – 136 (2013).

M. E. Özdemir, A. Ekinci, Generalized integral inequalities for convex functions , Math. Inequal. and Appl., 19, № 4, 1429 – 1439 (2016), https://doi.org/10.7153/mia-19-106 DOI: https://doi.org/10.7153/mia-19-106

C. Peng, C. Zhou, T. S. Du, Riemann – Liouville fractional Simpson’s inequalities through generalized $(m,h_1,h_2)$-preinvexity , Ital. J. Pure and Appl. Math., 38, (2017), № 38 , 345 – 367 (2017).

S. Qaisar, M. Iqbal, and M. Muddassar, New Hermite – Hadamard’s inequalities for preinvex functions via fractional integrals , J. Comput. Anal. and Appl., 20, № 7, 1318 – 1328 (2016).

M. Z. Sarikaya, E. Set, H. Yaldiz, N. Ba¸sak, Hermite – Hadamard’s inequalities for fractional integrals and related fractional inequalities , Math. and Comput. Modelling, 57, 2403 – 2407 (2013). DOI: https://doi.org/10.1016/j.mcm.2011.12.048

J. Wang, J. Deng, M. Fečkan, Hermite – Hadamard-type inequalities for r-convex functions based on the use of Riemann – Liouville frantional integrals , Ukr. Math. J., 65, № 2, 193 – 211 (2013), https://doi.org/10.1007/s11253-013-0773-y DOI: https://doi.org/10.1007/s11253-013-0773-y

H. Wang, T. S. Du, Y. Zhang, $k$-fractional integral trapezium-like inequalities through $(h,m)$-convex and $(alpha ,m)$-convex mappings , J. Inequal. and Appl., 2017, Article ID 311 (2017), 20 p., https://doi.org/10.1186/s13660-017-1586-6 DOI: https://doi.org/10.1186/s13660-017-1586-6

B. Y. Xi, F. Qi, Hermite – Hadamard type inequalities for geometrically $r$-convex functions , Studia Sci. Math. Hungar., 51, № 4, 530 – 546 (2014) (2017), https://doi.org/10.1556/SScMath.51.2014.4.1294 DOI: https://doi.org/10.1556/sscmath.51.2014.4.1294

E. A. Youness, $E$-convex sets, $E$-convex functions, and $E$-convex programming , J. Optim. Theory and Appl., 102, № 2, 439 – 450 (1999), https://doi.org/10.1023/A:1021792726715 DOI: https://doi.org/10.1023/A:1021792726715

Y. C. Zhang, T. S. Du, J. Pan, On new inequalities of Fej´er-Hermite – Hadamard type for differentiable $(alpha ,m)$-preinvex mappings , Science Asia, 43, № 4, 258 – 266 (2017).

Published
24.12.2020
How to Cite
Du, T. S., C. Y. Luo, Z. Z. Huang, and A. Kashuri. “Fractional Trapezium-Like Inequalities Involving Generalized Relative Semi-$(m, h_1, h_2 )$-Preinvex Mappings on an $m$-Invex Set”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 72, no. 12, Dec. 2020, pp. 1633-50, doi:10.37863/umzh.v72i12.6036.
Section
Research articles