On the rate of convergence in the invariance principle for weakly dependent random variables

  • A. K. Mukhamedov Nat. Univ. Uzbekistan, Tashkent
Keywords: uniformly strong mixing random variables, the rate of convergence, an invariance principle.

Abstract

UDC 519.21

We consider nonstationary sequences of $\varphi$-mixing random variables. By using the Levy–Prokhorov distance, we estimate the rate of convergence in the invariance principle for nonstationary $\varphi$-mixing random variables. The obtained results extend and generalize several known results for nonstationary $\varphi$-mixing random variables.

References

T. V. Arak, An estimate of A. A. Borovkov, Theory Probab. and Appl., 20, № 2, 380 – 381 (1976). DOI: https://doi.org/10.1137/1120040

I. Berkes, W. Philipp, Approximation theorems for independent and weakly dependent random vectors, Ann. Probab., 7, № 1, 29 – 54 (1979). DOI: https://doi.org/10.1214/aop/1176995146

P. Billingsley, Convergence of probability measures, Wiley, New York (1968).

A. A. Borovkov, On the convergence rate in the invariance principle, Theory Probab. and Appl., 29, № 3, 550 – 553 (1985). DOI: https://doi.org/10.1137/1129068

A. A. Borovkov, A. I. Sakhanenko, On the estimates of the rate of convergence in the invariance principle for Banach spaces, Theory Probab. and Appl., 25, № 4, 734 – 744 (1981). DOI: https://doi.org/10.1137/1125087

R. C. Bradley, Basic properties of strong mixing conditions. A survey and some open questions, Probab. Surv., 2, 107 – 144 (2005). DOI: https://doi.org/10.1214/154957805100000104

R. M. Dudley, Distance of probability measures and random variables, Ann. Math. Statist., 39, 1563 – 1572 (1968). DOI: https://doi.org/10.1214/aoms/1177698137

M. Donsker, An invariance principle for certain probability limit theorems, Mem. Amer. Math. Soc., 6, 250 – 268 (1951).

V. V. Gorodetsky, On the rate of convergence in the invariance principle for strongly mixing sequences, Theory Probab. and Appl., 28, № 4, 780 – 785 (1983). DOI: https://doi.org/10.1137/1128081

C. C. Heyde, Some properties of metrics on a study on convergence to normality, Z. Wahrscheinlichkeitstheor. und verw. Geb., 11, № 3, 181 – 192 (1969). DOI: https://doi.org/10.1007/BF00536379

I. A. Ibragimov, V. Linnik, Independent and stationary sequences of random variables, Wolters-Noordhoff, Groningen, the Netherlands (1971).

S. Kanagawa, Rates of convergence of the invariance principle for weakly dependent random variables, Yokohama Math. J., 30, № 1-2, 103 – 119 (1982).

J. Komlos, P. Major, G. Z. Tusnady, An approximation of partial sums of independent RV's and the sample DF.~I, Z.~Wahrscheinlichkeitstheor. und verw. Geb., 32, № 2, 111 – 131 (1975). DOI: https://doi.org/10.1007/BF00533093

J. Komlos, P. Major, G. Z. Tusnady, An approximation of partial sums of independent RV's and the sample DF. II, Z. Wahrscheinlichkeitstheor. und verw. Geb., 34, № 1, 33 – 58 (1976). DOI: https://doi.org/10.1007/BF00532688

M. Peligrad, S.~Utev, A new maximal inequality and invariance principle for stationary sequences, Ann. Probab., 33, № 2, 798 – 815 (2005). DOI: https://doi.org/10.1214/009117904000001035

Yu. V. Prokhorov, Convergence of random processes and limit theorems in probability theory, Theory Probab. and Appl., 1, № 2, 157 – 214 (1956). DOI: https://doi.org/10.1137/1101016

A. I. Sakhanenko, Estimates for the rate of convergence in the invariance principle, Dokl. Akad. Nauk SSSR, 219, 1076 – 1078 (1974).

A. I. Sakhanenko, Estimates in the invariance principle, Trudy Inst. Mat. SO RAN, vol.~5 (in Russian), Nauka, Novosibirsk (1985), p.~~27 – 44.

A. I. Sakhanenko, On the accuracy of normal approximation in the invariance principle, Trudy Inst. Mat. SO RAN, 19,

– 66 (1989) (in Russian).

A. I. Sakhanenko, Estimates in the invariance principle in terms of truncated power moments, Siberian Math. J., 47, № 6, 1113 – 1127 (2006). DOI: https://doi.org/10.1007/s11202-006-0119-1

A. I. Sakhanenko, A general estimate in the invariance principle, Siberian Math. J., 52, № 4, 696 – 710 (2011). DOI: https://doi.org/10.1134/S0037446611040136

A. V. Skorokhod, Research on the theory of stochastic processes, Kiev Univ. Press, Kiev (1961).

S. A. Utev, Inequalities for sums of weakly dependent random variables and estimates of rate of convergence in the invariance principle, Limit Theorems for Sums of Random Variables, Tr. Inst. Mat., 3, 50 – 77 (1984) (in Russian).

S. A. Utev, Sums of $varphi$-mixing random variables, Asymptotic Analysis of Distributions of Random Processes, Nauka, Novosibirsk (1989), p.~78 – 100 (in Russian).

K. Yoshihara, Convergence rates of the invariance principle for absolutely regular sequence, Yokohama Math. J., 27, № 1, 49 – 55 (1979).

T. M. Zuparov, A. K. Muhamedov, An invariance principle for processes with uniformly strongly mixing, Proc. Funct. Random Processes and Statistical Inference, Fan, Tashkent (1989), p.~27 – 36.

T. M. Zuparov, A. K. Muhamedov, On the rate of convergence of the invariance principle for $varphi$-mixing processes, Proc. Rep. VI USSR-Japan Symp. Probab. Theory and Math. Statistics, Kiev, August 5 – 10 (1991), p.~65.

Published
08.11.2022
How to Cite
Mukhamedov, A. K. “On the Rate of Convergence in the Invariance Principle for Weakly Dependent Random Variables”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 74, no. 9, Nov. 2022, pp. 1216 -30, doi:10.37863/umzh.v74i9.6244.
Section
Research articles