$\pi$-Formulae from dual series of the Dougall theorem
Abstract
UDC 517.5
By means of the extended Gould–Hsu inverse series relations, we find that the dual relation of Dougall's summation theorem for the well-poised $_7F_6$-series can be used to construct numerous interesting Ramanujan-like infinite-series expressions for $\pi^{\pm1}$ and $\pi^{\pm2},$ including an elegant formula for $\pi^{-2}$ due to Guillera.
References
V. Adamchik, S. Wagon, $pi$: A 2000-year search changes direction, Math. Educ. and Res., 5, № 1, 11–19 (1996).
D. Bailey et al., On the rapid computation of various polylogarithmic constants, Math. Comp., 66, № 218, 903–913 (1997). DOI: https://doi.org/10.1090/S0025-5718-97-00856-9
W. N. Bailey, Generalized hypergeometric series, Cambridge Univ. Press, Cambridge (1935).
D.~M.~Bressoud, A matrix inverse, Proc. Amer. Math. Soc., 88, № 3, 446–448 (1983). DOI: https://doi.org/10.1090/S0002-9939-1983-0699411-9
Yu.~A.~Brychkov, Handbook of special functions: derivatives, integrals, series and other formulas, CRC Press, Boca Raton, FL (2008). DOI: https://doi.org/10.1201/9781584889571
L. Carlitz, Some inverse series relations, Duke Math. J., 40, 893–901 (1973). DOI: https://doi.org/10.1215/S0012-7094-73-04083-0
X.~Chen, W.~Chu, Closed formulae for a class of terminating $_3F_2(4)$-series, Integral Transforms and Spec. Funct., 28, № 11, 825–837 (2017). DOI: https://doi.org/10.1080/10652469.2017.1376194
X.~Chen, W.~Chu, Terminating $_3F_2(4)$-series extended with three integer parameters, J. Difference Equat. and Appl., 24, № 8, 1346–1367 (2018). DOI: https://doi.org/10.1080/10236198.2018.1485668
W.~Chu, Inversion techniques and combinatorial identities, Boll. Unione Mat. Ital., Ser. 7, 737–760 (1993).
W.~Chu, Inversion techniques and combinatorial identities: strange evaluations of hypergeometric series, Pure Math. and Appl., 4, № 4, 409–428 (1993).
W. Chu, A new proof for a terminating ``strange'' hypergeometric evaluation of Gasper and Rahman conjectured by Gosper, C. R. Math. Acad. Sci. Paris, 318, 505–508 (1994).
W.~Chu, Inversion techniques and combinatorial identities: a quick introduction to the hypergeometric evaluations, Math. Appl., 283, 31–57 (1994). DOI: https://doi.org/10.1007/978-1-4613-3635-8_3
W.~Chu, Inversion techniques and combinatorial identities: basic hypergeometric identities, Publ. Math. Debrecen, 44, № 3/4, 301–320 (1994). DOI: https://doi.org/10.5486/PMD.1994.1367
W.~Chu, Inversion techniques and combinatorial identities: strange evaluations of basic hypergeometric series, Compos. Math., 91, 121–144 (1994).
W.~Chu, Inversion techniques and combinatorial identities: a unified treatment for the $_7F_6$-series identities, Collect. Math., 45, № 1, 13–43 (1994).
W.~Chu, Inversion techniques and combinatorial identities:
Jackson's $q$-analogue of the Dougall–Dixon theorem and the dual formulae, Compos. Math., 95, 43–68 (1995).
W.~Chu, Duplicate inverse series relations and hypergeometric evaluations with $z=1/4$, Boll. Unione Mat. Ital., Ser. 8, 585–604 (2002).
W.~Chu, Inversion techniques and combinatorial identities: balanced hypergeometric series, Rocky Mountain J. Math., 32, № 2, 561–587 (2002). DOI: https://doi.org/10.1216/rmjm/1030539687
W.~Chu, $q$-Derivative operators and basic hypergeometric series, Results Math., 49, № 1-2, 25–44 (2006). DOI: https://doi.org/10.1007/s00025-006-0209-1
W.~Chu, X.~Wang, Summation formulae on Fox–Wright $Psi$-functions, Integral Transforms and Spec. Funct., 19, № 8, 545–561 (2008). DOI: https://doi.org/10.1080/10652460802091575
W.~Chu, W. Zhang, Accelerating Dougall's $_5F_4$-sum and infinite series involving $pi$, Math. Comp., 83, № 285, 475–512 (2014). DOI: https://doi.org/10.1090/S0025-5718-2013-02701-9
J. Dougall, On Vandermonde's theorem, and some more general expansions, Proc. Edinb. Math. Soc., 25, 114–132 (1907). DOI: https://doi.org/10.1017/S0013091500033642
I. Gessel, Finding identities with the WZ method, J. Symbolic Comput., 20, № 5-6, 537–566 (1995). DOI: https://doi.org/10.1006/jsco.1995.1064
I. Gessel, D. Stanton, Strange evaluations of hypergeometric series, SIAM J. Math. Anal., 13, № 2, 295–308 (1982). DOI: https://doi.org/10.1137/0513021
I.~Gessel, D.~Stanton, Applications of $q$-Lagrange inversion to basic hypergeometric series, Trans. Amer. Math. Soc., 277, № 1, 173–201 (1983). DOI: https://doi.org/10.1090/S0002-9947-1983-0690047-7
I. Gessel, D. Stanton, Another family of $q$-Lagrange inversion formulas, Rocky Mountain J. Math., 16, № 2, 373–384 (1986). DOI: https://doi.org/10.1216/RMJ-1986-16-2-373
H.~W.~Gould, L.~C.~Hsu, Some new inverse series relations, Duke Math.~J., 40, 885–891 (1973). DOI: https://doi.org/10.1215/S0012-7094-73-04082-9
J. Guillera, About a new kind of Ramanujan-type series, Exp. Math., 12, № 4, 507–510 (2003). DOI: https://doi.org/10.1080/10586458.2003.10504518
J. Guillera, Generators of some Ramanujan formulas, Ramanujan J., 11, № 1, 41–48 (2006). DOI: https://doi.org/10.1007/s11139-006-5306-y
J. Guillera, Hypergeometric identities for 10 extended Ramanujan-type series, Ramanujan J., 15, № 2, 219–234 (2008). DOI: https://doi.org/10.1007/s11139-007-9074-0
E.~D.~Rainville, Special functions, The Macmillan Co., New York (1960).
S. Ramanujan, Modular equations and approximations to $pi$, Quart. J. Math., 45, 350–372 (1914).
K. R. Stromberg, An introduction to classical real analysis, Wadsworth, INC, Belmont, California (1981).
Copyright (c) 2023 WENCHANG CHU
This work is licensed under a Creative Commons Attribution 4.0 International License.