π-Formulae from dual series of the Dougall theorem
DOI:
https://doi.org/10.37863/umzh.v74i12.6587Keywords:
Classical hypergeometric series; The Dougall summation theorem; Gould-Hsu inverse series relations; Ramanujan's series for 1/π; Guillera's series for 1/π2.Abstract
UDC 517.5
By means of the extended Gould–Hsu inverse series relations, we find that the dual relation of Dougall's summation theorem for the well-poised 7F6-series can be used to construct numerous interesting Ramanujan-like infinite-series expressions for π±1 and π±2, including an elegant formula for π−2 due to Guillera.
References
V. Adamchik, S. Wagon, pi: A 2000-year search changes direction, Math. Educ. and Res., 5, № 1, 11–19 (1996).
D. Bailey et al., On the rapid computation of various polylogarithmic constants, Math. Comp., 66, № 218, 903–913 (1997). DOI: https://doi.org/10.1090/S0025-5718-97-00856-9
W. N. Bailey, Generalized hypergeometric series, Cambridge Univ. Press, Cambridge (1935).
D.~M.~Bressoud, A matrix inverse, Proc. Amer. Math. Soc., 88, № 3, 446–448 (1983). DOI: https://doi.org/10.1090/S0002-9939-1983-0699411-9
Yu.~A.~Brychkov, Handbook of special functions: derivatives, integrals, series and other formulas, CRC Press, Boca Raton, FL (2008). DOI: https://doi.org/10.1201/9781584889571
L. Carlitz, Some inverse series relations, Duke Math. J., 40, 893–901 (1973). DOI: https://doi.org/10.1215/S0012-7094-73-04083-0
X.~Chen, W.~Chu, Closed formulae for a class of terminating 3F2(4)-series, Integral Transforms and Spec. Funct., 28, № 11, 825–837 (2017). DOI: https://doi.org/10.1080/10652469.2017.1376194
X.~Chen, W.~Chu, Terminating 3F2(4)-series extended with three integer parameters, J. Difference Equat. and Appl., 24, № 8, 1346–1367 (2018). DOI: https://doi.org/10.1080/10236198.2018.1485668
W.~Chu, Inversion techniques and combinatorial identities, Boll. Unione Mat. Ital., Ser. 7, 737–760 (1993).
W.~Chu, Inversion techniques and combinatorial identities: strange evaluations of hypergeometric series, Pure Math. and Appl., 4, № 4, 409–428 (1993).
W. Chu, A new proof for a terminating ``strange'' hypergeometric evaluation of Gasper and Rahman conjectured by Gosper, C. R. Math. Acad. Sci. Paris, 318, 505–508 (1994).
W.~Chu, Inversion techniques and combinatorial identities: a quick introduction to the hypergeometric evaluations, Math. Appl., 283, 31–57 (1994). DOI: https://doi.org/10.1007/978-1-4613-3635-8_3
W.~Chu, Inversion techniques and combinatorial identities: basic hypergeometric identities, Publ. Math. Debrecen, 44, № 3/4, 301–320 (1994). DOI: https://doi.org/10.5486/PMD.1994.1367
W.~Chu, Inversion techniques and combinatorial identities: strange evaluations of basic hypergeometric series, Compos. Math., 91, 121–144 (1994).
W.~Chu, Inversion techniques and combinatorial identities: a unified treatment for the 7F6-series identities, Collect. Math., 45, № 1, 13–43 (1994).
W.~Chu, Inversion techniques and combinatorial identities:
Jackson's q-analogue of the Dougall–Dixon theorem and the dual formulae, Compos. Math., 95, 43–68 (1995).
W.~Chu, Duplicate inverse series relations and hypergeometric evaluations with z=1/4, Boll. Unione Mat. Ital., Ser. 8, 585–604 (2002).
W.~Chu, Inversion techniques and combinatorial identities: balanced hypergeometric series, Rocky Mountain J. Math., 32, № 2, 561–587 (2002). DOI: https://doi.org/10.1216/rmjm/1030539687
W.~Chu, q-Derivative operators and basic hypergeometric series, Results Math., 49, № 1-2, 25–44 (2006). DOI: https://doi.org/10.1007/s00025-006-0209-1
W.~Chu, X.~Wang, Summation formulae on Fox–Wright Psi-functions, Integral Transforms and Spec. Funct., 19, № 8, 545–561 (2008). DOI: https://doi.org/10.1080/10652460802091575
W.~Chu, W. Zhang, Accelerating Dougall's 5F4-sum and infinite series involving pi, Math. Comp., 83, № 285, 475–512 (2014). DOI: https://doi.org/10.1090/S0025-5718-2013-02701-9
J. Dougall, On Vandermonde's theorem, and some more general expansions, Proc. Edinb. Math. Soc., 25, 114–132 (1907). DOI: https://doi.org/10.1017/S0013091500033642
I. Gessel, Finding identities with the WZ method, J. Symbolic Comput., 20, № 5-6, 537–566 (1995). DOI: https://doi.org/10.1006/jsco.1995.1064
I. Gessel, D. Stanton, Strange evaluations of hypergeometric series, SIAM J. Math. Anal., 13, № 2, 295–308 (1982). DOI: https://doi.org/10.1137/0513021
I.~Gessel, D.~Stanton, Applications of q-Lagrange inversion to basic hypergeometric series, Trans. Amer. Math. Soc., 277, № 1, 173–201 (1983). DOI: https://doi.org/10.1090/S0002-9947-1983-0690047-7
I. Gessel, D. Stanton, Another family of q-Lagrange inversion formulas, Rocky Mountain J. Math., 16, № 2, 373–384 (1986). DOI: https://doi.org/10.1216/RMJ-1986-16-2-373
H.~W.~Gould, L.~C.~Hsu, Some new inverse series relations, Duke Math.~J., 40, 885–891 (1973). DOI: https://doi.org/10.1215/S0012-7094-73-04082-9
J. Guillera, About a new kind of Ramanujan-type series, Exp. Math., 12, № 4, 507–510 (2003). DOI: https://doi.org/10.1080/10586458.2003.10504518
J. Guillera, Generators of some Ramanujan formulas, Ramanujan J., 11, № 1, 41–48 (2006). DOI: https://doi.org/10.1007/s11139-006-5306-y
J. Guillera, Hypergeometric identities for 10 extended Ramanujan-type series, Ramanujan J., 15, № 2, 219–234 (2008). DOI: https://doi.org/10.1007/s11139-007-9074-0
E.~D.~Rainville, Special functions, The Macmillan Co., New York (1960).
S. Ramanujan, Modular equations and approximations to pi, Quart. J. Math., 45, 350–372 (1914).
K. R. Stromberg, An introduction to classical real analysis, Wadsworth, INC, Belmont, California (1981).