π-Formulae from dual series of the Dougall theorem

Автор(и)

  • W. Chu School Math. and Statistics, Zhoukou Normal Univ., Henan, China and Univ. Salento, Italy

DOI:

https://doi.org/10.37863/umzh.v74i12.6587

Ключові слова:

Classical hypergeometric series; The Dougall summation theorem; Gould-Hsu inverse series relations; Ramanujan's series for 1/π; Guillera's series for 1/π2.

Анотація

УДК 517.5

π-формули з дуальних рядів теореми Дугалла

За допомогою узагальнених співвідношень  Гулда та  Хсу для  оберненого ряду доведено, що дуальне співвідношення теореми підсумовування Дугалла для добре збалансованого 7F6-ряду можна використати для побудови багатьох цікавих виразів для нескінченного ряду, подібних до виразів, що були отримані  Рамануджаном для π±1 і π±2, включаючи елегантну формулу Гільєра для π2.

Посилання

V. Adamchik, S. Wagon, pi: A 2000-year search changes direction, Math. Educ. and Res., 5, № 1, 11–19 (1996).

D. Bailey et al., On the rapid computation of various polylogarithmic constants, Math. Comp., 66, № 218, 903–913 (1997). DOI: https://doi.org/10.1090/S0025-5718-97-00856-9

W. N. Bailey, Generalized hypergeometric series, Cambridge Univ. Press, Cambridge (1935).

D.~M.~Bressoud, A matrix inverse, Proc. Amer. Math. Soc., 88, № 3, 446–448 (1983). DOI: https://doi.org/10.1090/S0002-9939-1983-0699411-9

Yu.~A.~Brychkov, Handbook of special functions: derivatives, integrals, series and other formulas, CRC Press, Boca Raton, FL (2008). DOI: https://doi.org/10.1201/9781584889571

L. Carlitz, Some inverse series relations, Duke Math. J., 40, 893–901 (1973). DOI: https://doi.org/10.1215/S0012-7094-73-04083-0

X.~Chen, W.~Chu, Closed formulae for a class of terminating 3F2(4)-series, Integral Transforms and Spec. Funct., 28, № 11, 825–837 (2017). DOI: https://doi.org/10.1080/10652469.2017.1376194

X.~Chen, W.~Chu, Terminating 3F2(4)-series extended with three integer parameters, J. Difference Equat. and Appl., 24, № 8, 1346–1367 (2018). DOI: https://doi.org/10.1080/10236198.2018.1485668

W.~Chu, Inversion techniques and combinatorial identities, Boll. Unione Mat. Ital., Ser. 7, 737–760 (1993).

W.~Chu, Inversion techniques and combinatorial identities: strange evaluations of hypergeometric series, Pure Math. and Appl., 4, № 4, 409–428 (1993).

W. Chu, A new proof for a terminating ``strange'' hypergeometric evaluation of Gasper and Rahman conjectured by Gosper, C. R. Math. Acad. Sci. Paris, 318, 505–508 (1994).

W.~Chu, Inversion techniques and combinatorial identities: a quick introduction to the hypergeometric evaluations, Math. Appl., 283, 31–57 (1994). DOI: https://doi.org/10.1007/978-1-4613-3635-8_3

W.~Chu, Inversion techniques and combinatorial identities: basic hypergeometric identities, Publ. Math. Debrecen, 44, № 3/4, 301–320 (1994). DOI: https://doi.org/10.5486/PMD.1994.1367

W.~Chu, Inversion techniques and combinatorial identities: strange evaluations of basic hypergeometric series, Compos. Math., 91, 121–144 (1994).

W.~Chu, Inversion techniques and combinatorial identities: a unified treatment for the 7F6-series identities, Collect. Math., 45, № 1, 13–43 (1994).

W.~Chu, Inversion techniques and combinatorial identities:

Jackson's q-analogue of the Dougall–Dixon theorem and the dual formulae, Compos. Math., 95, 43–68 (1995).

W.~Chu, Duplicate inverse series relations and hypergeometric evaluations with z=1/4, Boll. Unione Mat. Ital., Ser. 8, 585–604 (2002).

W.~Chu, Inversion techniques and combinatorial identities: balanced hypergeometric series, Rocky Mountain J. Math., 32, № 2, 561–587 (2002). DOI: https://doi.org/10.1216/rmjm/1030539687

W.~Chu, q-Derivative operators and basic hypergeometric series, Results Math., 49, № 1-2, 25–44 (2006). DOI: https://doi.org/10.1007/s00025-006-0209-1

W.~Chu, X.~Wang, Summation formulae on Fox–Wright Psi-functions, Integral Transforms and Spec. Funct., 19, № 8, 545–561 (2008). DOI: https://doi.org/10.1080/10652460802091575

W.~Chu, W. Zhang, Accelerating Dougall's 5F4-sum and infinite series involving pi, Math. Comp., 83, № 285, 475–512 (2014). DOI: https://doi.org/10.1090/S0025-5718-2013-02701-9

J. Dougall, On Vandermonde's theorem, and some more general expansions, Proc. Edinb. Math. Soc., 25, 114–132 (1907). DOI: https://doi.org/10.1017/S0013091500033642

I. Gessel, Finding identities with the WZ method, J. Symbolic Comput., 20, № 5-6, 537–566 (1995). DOI: https://doi.org/10.1006/jsco.1995.1064

I. Gessel, D. Stanton, Strange evaluations of hypergeometric series, SIAM J. Math. Anal., 13, № 2, 295–308 (1982). DOI: https://doi.org/10.1137/0513021

I.~Gessel, D.~Stanton, Applications of q-Lagrange inversion to basic hypergeometric series, Trans. Amer. Math. Soc., 277, № 1, 173–201 (1983). DOI: https://doi.org/10.1090/S0002-9947-1983-0690047-7

I. Gessel, D. Stanton, Another family of q-Lagrange inversion formulas, Rocky Mountain J. Math., 16, № 2, 373–384 (1986). DOI: https://doi.org/10.1216/RMJ-1986-16-2-373

H.~W.~Gould, L.~C.~Hsu, Some new inverse series relations, Duke Math.~J., 40, 885–891 (1973). DOI: https://doi.org/10.1215/S0012-7094-73-04082-9

J. Guillera, About a new kind of Ramanujan-type series, Exp. Math., 12, № 4, 507–510 (2003). DOI: https://doi.org/10.1080/10586458.2003.10504518

J. Guillera, Generators of some Ramanujan formulas, Ramanujan J., 11, № 1, 41–48 (2006). DOI: https://doi.org/10.1007/s11139-006-5306-y

J. Guillera, Hypergeometric identities for 10 extended Ramanujan-type series, Ramanujan J., 15, № 2, 219–234 (2008). DOI: https://doi.org/10.1007/s11139-007-9074-0

E.~D.~Rainville, Special functions, The Macmillan Co., New York (1960).

S. Ramanujan, Modular equations and approximations to pi, Quart. J. Math., 45, 350–372 (1914).

K. R. Stromberg, An introduction to classical real analysis, Wadsworth, INC, Belmont, California (1981).

Завантаження

Опубліковано

17.01.2023

Номер

Розділ

Статті