Bounded and summable solutions of a difference equation with piecewise constant operator coefficients

  • М. F. Horodnii Taras Shevchenko National University of Kyiv

Abstract

UDC 517.929.2

We prove the necessity of known sufficient conditions for the existence of a unique solution bounded or summable with degree $p$ for a linear difference equation with piecewise constant operator coefficients.

References

Yu. L. Daleckij, M. G. Kreĭn, Ustojchivost' reshenij differencial'nyh uravnenij v banahovom prostranstve, Nauka, Moskva (1970).

I. V. Gonchar, Pro obmezheni i sumovni rozv’yazki riznicevogo rivnyannya zi stribkom operatornogo koeficiєnta, Visn. Kyiv. nac. un-tu im. T. Shevchenka. Ser. fiz.-mat. nauki, № 2, 25 – 28 (2016).

M. F. Horodnii, I. V. Gonchar, Pro obmezheni rozv’yazki riznicevogo rivnyannya zi zminnim operatornim koeficiєntom, Dop. NAN Ukraїni, № 12, 12 – 16 (2016).

A. G. Baskakov, A. I. Pastuhov, Spektral'nyj analiz operatora vzveshennogo sdviga s neogranichennymi operatornymi koefficientami, Sib. mat. zhurn., 42, № 6, 1231 – 1243 (2001).

V. YU. Slyusarchuk, Eksponencial'no dihotomichni riznicevi rivnyannya z kuskovo-stalimi operatornimi koeficiєntami, Ukr. mat. zhurn., 72, № 6, 822 – 841 (2020).

M. F. Gorodnij, O. A. Pechericya, Obmezheni rozv’yazki diferencial'nogo rivnyannya z kuskovo-stalimi operatornimi koeficiєntami, Nelinijni kolivannya, 24, № 2, 147 – 157 (2021).

A. V. Chaikovs'kyi, O. A. Lagoda, Bounded solutions of a difference equation in Banach space with input data in subspaces, Ukr. mat. zhurn.,, 73, № 11, 1564 – 1575 (2021), https://doi.org/10.37863/umzh.v73i11.6692

V. YU. Slyusarchuk, Ob eksponencial'noj dihotomii reshenij diskretnyh sistem, Ukr. mat. zhurn.,35, № 1, 109 – 115 (1983).

D. Henri, Geometricheskaya teoriya polulinejnyh parabolicheskih uravnenij, Mir, Moskva (1985).

A. YA. Dorogovcev, Periodicheskie i stacionarnye rezhimy beskonechnomernyh determinirovannyh i stohasticheskih dinamicheskih sistem, Vishcha shk., Kiev (1992).

A. A. Boichuk, A. M. Samoilenko, Generalized inverse operators and Fredholm boundary value problems, VSP, Utrecht, Boston (2004), https://doi.org/10.1515/9783110944679

A. G. Baskakov, Issledovanie linejnyh differencial'nyh uravnenij metodami spektral'noj teorii raznostnyh operatorov i linejnyh otnoshenij, Uspekhi mat. nauk, 68, vyp. 1(409), 77 – 128 (2013).

M. F. Horodnii, Ogranichennye i periodicheskie resheniya odnogo raznostnogo uravneniya i ego stohasticheskogo analoga v banahovom prostranstve, Ukr. mat. zhurn.,43, № 1, 41 – 46 (1991).

M. F. Horodnii, I. V. Gonchar, Obmezheni u seredn'omu poryadku p rozv’yazki riznicevogo rivnyannya zi stribkom operatornogo koeficiєnta, Teoriya jmovirnostej ta mat. statistika, vip. 2(101), 93 – 97 (2019).

M. Horodnii, V. Kravets, Bounded in the mean solutions of a second-order difference equation, Modern Stochastics: Theory and Appl., 8, № 4, 465 – 474 (2021), https://doi.org/10.15559/21-VMSTA189

Published
09.08.2022
How to Cite
Horodnii М. F. “Bounded and Summable Solutions of a Difference Equation With Piecewise Constant Operator Coefficients”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 74, no. 7, Aug. 2022, pp. 930 -38, doi:10.37863/umzh.v74i7.7087.
Section
Research articles