On the behavior of one class of homeomorphisms at infinity
Abstract
UDC 517.5
We study the behavior of ring $Q$-homeomorphisms with respect to the $p$-modulus with $p>n$ at infinity.
References
J. V"{a}is"{a}l"{a, Lectures on n-dimensional quasiconformal mappings, Lect. Notes Math., vol. 229, Springer-Verlag, Berlin (1971).
V. I. Ryazanov, E. A. Sevost'yanov, Equicontinuous classes of ring $Q$-homeomorphisms, Sib. Math. J., 48, № 6, 1093 – 1105 (2007).
O. Martio, V. Ryazanov, U. Srebro, E. Yakubov, $Q$-homeomorphisms, Complex Analysis and Dynamical Systems, Contemp. Math., 364, 193 – 203 (2004).
O. Martio, V. Ryazanov, U. Srebro, E. Yakubov, On $Q$-homeomorphisms, Ann. Acad. Sci. Fenn. Math., 30, № 1, 49 – 69 (2005).
O. Martio, V. Ryazanov, U. Srebro, E. Yakubov, Moduli in modern mapping theory, Springer Math. Monogr., New York (2009).
R. Salimov, ACL and differentiability of a generalization of quasiconformal maps, Izv. Math., 72, № 5, 977 – 984 (2008).
A. Golberg, Differential properties of $(alpha, Q)$-homeomorphisms, Further Progress in Analysis, Proc. 6th ISAAC Congr. (2009), p.~218 – 228.
A. Golberg, Integrally quasiconformal mappings in space, Trans. Inst. Math. NAS Ukraine, 7, № 2, 53 – 64 (2010).
A. Golberg, R. Salimov, Logarithmic H{"o}lder continuity of ring homeomorphisms with controlled p-module, Complex Var. and Elliptic Equat., 59, № 1, 91 – 98 (2014).
A. Golberg, R. Salimov, E. Sevost'yanov, Distortion estimates under mappings with controlled $p$-module, Ann. Univ. Bucharest, Math. Ser., 63, № 5, 95 – 114 (2014).
R. Salimov, On finitely Lipschitz space mappings, Sib. Elecron. Math. Rep., 8, 284 – 295 (2011).
R. Salimov, Estimation of the measure of the image of the ball, Sib. Math. J., 53, № 4, 920 – 930 (2012).
R. Salimov, To a theory of ring $Q$-homeomorphisms with respect to a $p$-modulus, Ukr. Math. Bull., 10, № 3, 379 – 396 (2013).
R. Salimov, Оne property of ring $Q$-homeomorphisms with respect to a $p$-module, Ukr. Math. J., 65, № 5, 728 – 733 (2013).
R. Salimov, B. Klishchuk, The extremal problem for the area of an image of a disc, Rep. NAS Ukraine, 10, 22 – 27 (2016).
B. Klishchuk, R. Salimov, Lower bounds for the area of the image of a circle, Ufa Math. J., 9, № 2, 55 – 61 (2017).
R. Salimov, B. Klishchuk, Extremal problem for the area of the image of a disk, Zap. Nauchn. Sem. POMI, 456, 160 – 171 (2017).
R. Salimov, B. Klishchuk, An extremal problem for the volume functional, Mat. Stud., 50, № 1, 36 – 43 (2018).
B. Klishchuk, R. Salimov, Lower bounds for the volume of the image of a ball, Ukr. Math. J., 71, № 6, 774 – 785 (2019).
M. Cristea, Local homeomorphisms satisfying generalized modular inequalities, Complex Var. and Eliptic Equat., 59, № 2, 232 – 246 (2014).
M. Cristea, Some properties of open discrete generalized ring mappings, Complex Var. and Eliptic Equat., 61, № 5, 623 – 643 (2016).
M. Cristea, Eliminability results for mappings satisfying generalized modular inequalities, Complex Var. and Eliptic Equat., 64, № 4, 676 – 684 (2019).
А. А. Маркиш, Р. Р. Салимов, Е. А. Севостьянов, Об оценке искажения расстояния снизу для одного класса отображений, Укр. мат. журн, 70, № 11, 1553 – 1562 (2018).
A. Golberg, R. Salimov, E. Sevost'yanov, Singularities of discrete open mappings with controlled p-module, J. Anal. Math., 127, 303 – 328 (2015).
A. Golberg, R. Salimov, E. Sevost'yanov, Poletskii type inequality for mappings from the Orlicz – Sobolev classes, Complex Anal. and Oper. Theory, 10, 881 – 901 (2016).
A. Golberg, R. Salimov, E. Sevost'yanov, Estimates for Jacobian and dilatation coefficients of open discrete mappings with controlled p-module, Complex Anal. and Oper. Theory, 11, № 7, 1521 – 1542 (2017).
R. Salimov, E. Smolovaya, On the order of growth of ring Q-homeomorphisms at infinity, Ukr. Math. J., 62, № 6, 829 – 836 (2010).
Ю. Г. Решетняк, Пространственные отображения с ограниченным искажением, Новосибирск, Наука (1982).
O. Martio, S. Rickman, J. V"{a}is"{a}l"{a}, Definitions for quasiregular mappings, Ann. Acad. Sci. Fenn. Math.,448, 1 – 40 (1969).
V. A. Shlyk, The equality between $p$-capacity and $p$-modulus, Sib. Math. J., 34, № 6, 216 – 221 (1993).
V. Maz'ya, Lectures on isoperimetric and isocapacitary inequalities in the theory of Sobolev spaces, Contemp. Math., 338, 307 – 340 (2003).
F. W. Gehring, Lipschitz mappings and the $p$-capacity of ring in $n$-space, Adv. Theory Riemann Surfaces (Proc. Conf. Stonybrook, New York, 1969), Ann. Math. Stud., 66, 175 – 193 (1971).
Copyright (c) 2022 Богдан Кліщук, Руслан Салімов
This work is licensed under a Creative Commons Attribution 4.0 International License.