A fitted approximate method for solving singularly perturbed Volterra–Fredholm integro-differential equations with an integral boundary condition

  • Baransel Gunes Department of Mathematics, Faculty of Science, Van Yuzuncu Yil University, Turkey
  • Musa Cakir Department of Mathematics, Faculty of Science, Van Yuzuncu Yil University, Turkey
Keywords: Finite difference method, integral boundary condition, integro-differential equation, singular perturbation, uniform convergence

Abstract

UDC 517.9

We consider a novel numerical approach for solving boundary-value problems for the second-order Volterra–Fredholm integro-differential equation with layer behavior and an integral boundary condition. A finite-difference scheme is proposed on suitable Shishkin-type mesh to obtain the approximate solution of the presented problem. It is proven that the method is first-order convergent in the discrete maximum norm. Two numerical examples are included to show the efficiency of the method.

References

N. Adzic, Spectral approximation and nonlocal boundary value problems, Novi Sad J. Math., 30, 1–10 (2000).

G. M. Amiraliyev, Ya. D. Mamedov, Difference schemes on the uniform mesh for singularly perturbed pseudo-parabolic equations, Turk. J. Math., 19, № 3, 207–222 (1995).

G. M. Amiraliyev, H. Duru, A note on a parameterized singular perturbation problem, J. Comput. and Appl. Math., 182, № 1, 233–242 (2005).

D. Arslan, M. Cakir, A numerical solution study on singularly perturbed convection-diffusion nonlocal boundary problem, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. and Stat., 68, № 2, 1482–1491 (2019).

D. Arslan, M. Cakir, Y. Masiha, A novel numerical approach for solving convection-diffusion problem with boundary layer behavior, Gazi Univ. J. Sci., 33, № 1, 152–162 (2020).

D. Arslan, A new second-order difference approximation for nonlocal boundary value problem with boundary layers, Math. Model. and Anal., 25, № 2, 257–270 (2020).

C. M. Bender, S. A. Orszag, Advanced mathematical methods for scientists and engineers, McGraw-Hill, New York (1978).

A. V. Bitsadze, A. A. Samarskii, On some simpler generalization of linear elliptic boundary value problems, Dokl. Akad. Nauk SSSR, 185, 739–740 (1969).

A. A. Boichuk, M. K. Grammatikopoulos, Perturbed Fredholm boundary value problems for delay differential systems, Abstr. and Appl. Anal., 2003, 843–864 (2003).

A. Boichuk, J. Diblik, D. Khusainov, M. Rikov, Fredholms boundary-value problems for differential systems with a single delay, Nonlinear Anal., 72, № 5, 2251–2258 (2010).

A. Bugajev, R. Ciegis, Comparison of adaptive meshes for a singularly perturbed reaction-diffusion problem, Math. Model. and Anal., 17, № 5, 732–748 (2012).

M. Cakir, A numerical study on the difference solution of singularly perturbed semilinear problem with integral boundary condition, Math. Model. and Anal., 21, № 5, 644–658 (2016).

M. Cakir, G. M. Amiraliyev, A second order numerical method for singularly perturbed problem with non-local boundary condition, J. Appl. Math. and Comput., 67, № 1, 919–936 (2021).

M. Cakir, D. Arslan, A new numerical approach for a singularly perturbed problem with two integral boundary conditions, Comput. Appl. Math., 40, № 6, 1–17 (2021).

M. Cakir, B. Gunes, Exponentially fitted difference scheme for singularly perturbed mixed integro-differential equations, Georgian Math. J., 29, № 2, 193–203 (2022).

M. Cakir, B. Gunes, A fitted operator finite difference approximation for singularly perturbed Volterra–Fredholm integro-differential equations, Mathematics, 10, № 19, Article 3560 (2022).

R. Chegis, The numerical solution of singularly perturbed nonlocal problem} (in Russian), Liet. Mat. Rink., 28, 144–152 (1988).

R. Chegis, The difference scheme for problems with nonlocal conditions, Informatica, 2, 155–170 (1991).

R. Čiegis, A. Štikonas, O. Štikoniené, O. Suboč, A monotonic finite-difference scheme for a parabolic problem with nonlocal conditions, Different. Equat., 38, № 7, 1027–1037 (2002); https://doi.org/10.1023/A:1021167932414.

E. Cimen, M. Cakir, Numerical treatment of nonlocal boundary value problem with layer behavior, Bull. Belg. Math. Soc. Simon Stevin, 24, 339–352 (2017).

E. Cimen, M. Cakir, A uniform numerical method for solving singularly perturbed Fredholm integro-differential problem, Comput. Appl. Math., 40, № 2, 1–14 (2021).

H. G. Debela, G. F. Duressa, Uniformly convergent numerical method for singularly perturbed convection-diffusion type problems with nonlocal boundary condition, Int. J. Numer. Methods Fluids, 92, № 12, 1914–1926 (2020).

H. G. Debela, M. M. Woldaregay, G. F. Duressa, Robust numerical method for singularly perturbed convection-diffusion type problems with non-local boundary condition, Math. Model. and Anal., 27, № 2, 199–214 (2022).

E. P. Doolan, J. J. H. Miller, W. H. A. Schilders, Uniform numerical methods for problems with initial and boundary layers, Boole Press, Dublin (1980).

M. E. Durmaz, M. Cakir, I. Amirali, G. M. Amiraliyev, Numerical solution of singularly perturbed Fredholm integro-differential equations by homogeneous second order difference method, J. Comput. and Appl. Math., 412, Article 114327 (2022).

M. E. Durmaz, Ö. Yapman, M. Kudu, G. Amirali, An efficient numerical method for a singularly perturbed Volterra–Fredholm integro-differential equation, Hacet. J. Math. and Stat., 52, № 2, 326–339 (2023).

M. E. Durmaz, I. Amirali, G. M. Amiraliyev, An efficient numerical method for a singularly perturbed Fredholm integro-differential equation with integral boundary condition, J. Appl. Math. and Comput., 69, № 1, 505–528 (2023).

S. Elango, A. Tamilselvan, R. Vadivel, N. Gunasekaran, H. Zhu, J. Cao, X. Li, Finite difference scheme for singularly perturbed reaction diffusion problem of partial delay differential equation with nonlocal boundary condition, Adv. Differenr. Equat., 2021, № 1, 1–20 (2021).

P. Farrell, A. Hegarty, J. M. Miller, E. O'Riordan, G. I. Shishkin, Robust computational techniques for boundary layers, Chapman and Hall/CRC (2000).

D. Herceg, On the numerical solution of a singularly perturbed nonlocal problem, Univ. u Novom Sadu Zb. Rad. Prirod.-Mat. Fak. Ser. Math., 20, 1–10 (1990).

B. C. Iragi, J. B. Munyakazi, A uniformly convergent numerical method for a singularly perturbed Volterra integro-differential equation, Int. J. Comput. Math., 97, № 4, 759–771 (2020).

T. Jankowski, Existence of solutions of differential equations with nonlinear multipoint boundary conditions, Comput. Math. Appl., 47, № 6-7, 1095–1103 (2004); http://dx.doi.org/10.1016/S0898-1221(04)90089-2.

M. K. Kadalbajoo, V. Gupta, A brief survey on numerical methods for solving singularly perturbed problems, Appl. Math. and Comput., 217, № 8, 3641–3716 (2010).

B. Kalimbetov, V. Safonov, Regularization method for singularly perturbed integro-differential equations with rapidly oscillating coefficients and rapidly changing kernels, Axioms, 9, № 4, Article 131 (2020).

J. Kevorkian, J. D. Cole, Perturbation methods in applied mathematics, Springer, New York (1981); http://dx.doi.org/ 10.1007/978-1-4757-4213-8.

M. Kudu, G.M. Amiraliyev, Finite difference method for a singularly perturbed differential equations with integral boundary condition, Int. J. Math. Comput., 26, № 3, 71–79 (2015).

D. Kumar, P. Kumari, A parameter-uniform collocation scheme for singularly perturbed delay problems with integral boundary condition, J. Appl. Math. and Comput., 63, № 1, 813–828 (2020).

S. Kumar, J. Vigo-Aguiar, Analysis of a nonlinear singularly perturbed Volterra integro-differential equation, J. Comput. and Appl. Math., 404, Article 113410 (2022).

T. Linβ, Layer-adapted meshes for reaction-convection-diffusion problems, Springer, Berlin (2010).

L.B. Liu, G. Long, Z. Cen, A robust adaptive grid method for a nonlinear singularly perturbed differential equation with integral boundary condition, Numer. Algorithms, 83, № 2, 719–739 (2020).

J. J. H. Miller, E. O'Riordan, G. I. Shishkin, Fitted numerical methods for singular perturbation problems: error estimates in the maximum norm for linear problems in one and two dimensions, World Sci. (1996).

K. Munusamy, C. Ravichandran, K. S. Nisar, B. Ghanbari, Existence of solutions for some functional integrodifferential equations with nonlocal conditions, Math. Methods Appl. Sci., 43, № 17, 10319–10331 (2020).

A. H. Nayfeh, Introduction to perturbation techniques, Wiley, New York (1993).

R. E. O'Malley, Singular perturbation methods for ordinary differential equations, New York, Springer (1991).

A. Panda, J. Mohapatra, I. Amirali, A second-order post-processing technique for singularly perturbed Volterra integro-differential equations, Mediterr. J. Math., 18, № 6, 1–25 (2021).

H. G. Roos, M. Stynes, L. Tobiska, Numerical methods for singularly perturbed differential equations, Springer-Verlag (1996).

A. A. Samarski, The theory of difference schemes, Marcel Dekker, Inc., New York (2001).

A. M. Samoilenko, A. A. Boichuk, L. I. Karandzhulov, Fredholm boundary value problems with a singular perturbation, Different. Equat., 37, № 9, 1243–1251 (2001).

M. Sapagovas, R. Chegis, Numerical solution of nonlocal problems} (in Russian), Liet. Mat. Rink., 27, 348–356 (1987).

M. Sapagovas, R. Chegis, On some boundary value problems with nonlocal condition (in Russian), Different. Equat., 23, 1268–1274 (1987).

X. Tao, Y. Zhang, The coupled method for singularly perturbed Volterra integro-differential equations, Adv. Different. Equaat., 2019, № 1, 1–16 (2019).

Ö. Yapman, G. M. Amiraliyev, Convergence analysis of the homogeneous second order difference method for a singularly perturbed Volterra delay-integro-differential equation, Chaos Solitons Fractals, 150, Article 111100 (2021).

Published
02.02.2024
How to Cite
Gunes, B., and M. Cakir. “A Fitted Approximate Method for Solving Singularly Perturbed Volterra–Fredholm Integro-Differential Equations With an Integral Boundary Condition”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 76, no. 1, Feb. 2024, pp. 115 -31, doi:10.3842/umzh.v76i1.7331.
Section
Research articles