# A fitted approximate method for solving singularly perturbed Volterra–Fredholm integro-differential equations with an integral boundary condition

### Abstract

UDC 517.9

We consider a novel numerical approach for solving boundary-value problems for the second-order Volterra–Fredholm integro-differential equation with layer behavior and an integral boundary condition. A finite-difference scheme is proposed on suitable Shishkin-type mesh to obtain the approximate solution of the presented problem. It is proven that the method is first-order convergent in the discrete maximum norm. Two numerical examples are included to show the efficiency of the method.

### References

N. Adzic, *Spectral approximation and nonlocal boundary value problems*, Novi Sad J. Math., **30**, 1–10 (2000).

G. M. Amiraliyev, Ya. D. Mamedov, *Difference schemes on the uniform mesh for singularly perturbed pseudo-parabolic equations*, Turk. J. Math., **19**, № 3, 207–222 (1995).

G. M. Amiraliyev, H. Duru, *A note on a parameterized singular perturbation problem*, J. Comput. and Appl. Math., **182**, № 1, 233–242 (2005).

D. Arslan, M. Cakir, *A numerical solution study on singularly perturbed convection-diffusion nonlocal boundary problem*, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. and Stat., **68**, № 2, 1482–1491 (2019).

D. Arslan, M. Cakir, Y. Masiha, *A novel numerical approach for solving convection-diffusion problem with boundary layer behavior*, Gazi Univ. J. Sci., **33**, № 1, 152–162 (2020).

D. Arslan, *A new second-order difference approximation for nonlocal boundary value problem with boundary layers*, Math. Model. and Anal., **25**, № 2, 257–270 (2020).

C. M. Bender, S. A. Orszag, *Advanced mathematical methods for scientists and engineers*, McGraw-Hill, New York (1978).

A. V. Bitsadze, A. A. Samarskii, *On some simpler generalization of linear elliptic boundary value problems*, Dokl. Akad. Nauk SSSR, **185**, 739–740 (1969).

A. A. Boichuk, M. K. Grammatikopoulos, *Perturbed Fredholm boundary value problems for delay differential systems*, Abstr. and Appl. Anal., **2003**, 843–864 (2003).

A. Boichuk, J. Diblik, D. Khusainov, M. Rikov, *Fredholms boundary-value problems for differential systems with a single delay*, Nonlinear Anal., **72**, № 5, 2251–2258 (2010).

A. Bugajev, R. Ciegis, *Comparison of adaptive meshes for a singularly perturbed reaction-diffusion problem*, Math. Model. and Anal., **17**, № 5, 732–748 (2012).

M. Cakir, *A numerical study on the difference solution of singularly perturbed semilinear problem with integral boundary condition*, Math. Model. and Anal., **21**, № 5, 644–658 (2016).

M. Cakir, G. M. Amiraliyev, *A second order numerical method for singularly perturbed problem with non-local boundary condition*, J. Appl. Math. and Comput., **67**, № 1, 919–936 (2021).

M. Cakir, D. Arslan, *A new numerical approach for a singularly perturbed problem with two integral boundary conditions*, Comput. Appl. Math., **40**, № 6, 1–17 (2021).

M. Cakir, B. Gunes, *Exponentially fitted difference scheme for singularly perturbed mixed integro-differential equations*, Georgian Math. J., **29**, № 2, 193–203 (2022).

M. Cakir, B. Gunes, *A fitted operator finite difference approximation for singularly perturbed Volterra–Fredholm integro-differential equations*, Mathematics, **10**, № 19, Article 3560 (2022).

R. Chegis, *The numerical solution of singularly perturbed nonlocal problem} (in Russian), Liet. Mat. Rink., 28, 144–152 (1988).*

R. Chegis, *The difference scheme for problems with nonlocal conditions*, Informatica, **2**, 155–170 (1991).

R. Čiegis, A. Štikonas, O. Štikoniené, O. Suboč, *A monotonic finite-difference scheme for a parabolic problem with nonlocal conditions*, Different. Equat., **38**, № 7, 1027–1037 (2002); https://doi.org/10.1023/A:1021167932414.

E. Cimen, M. Cakir, *Numerical treatment of nonlocal boundary value problem with layer behavior*, Bull. Belg. Math. Soc. Simon Stevin, **24**, 339–352 (2017).

E. Cimen, M. Cakir, *A uniform numerical method for solving singularly perturbed Fredholm integro-differential problem*, Comput. Appl. Math., **40**, № 2, 1–14 (2021).

H. G. Debela, G. F. Duressa, *Uniformly convergent numerical method for singularly perturbed convection-diffusion type problems with nonlocal boundary condition*, Int. J. Numer. Methods Fluids, **92**, № 12, 1914–1926 (2020).

H. G. Debela, M. M. Woldaregay, G. F. Duressa, *Robust numerical method for singularly perturbed convection-diffusion type problems with non-local boundary condition*, Math. Model. and Anal., **27**, № 2, 199–214 (2022).

E. P. Doolan, J. J. H. Miller, W. H. A. Schilders, *Uniform numerical methods for problems with initial and boundary layers*, Boole Press, Dublin (1980).

M. E. Durmaz, M. Cakir, I. Amirali, G. M. Amiraliyev, *Numerical solution of singularly perturbed Fredholm integro-differential equations by homogeneous second order difference method*, J. Comput. and Appl. Math., **412**, Article 114327 (2022).

M. E. Durmaz, Ö. Yapman, M. Kudu, G. Amirali, *An efficient numerical method for a singularly perturbed Volterra–Fredholm integro-differential equation*, Hacet. J. Math. and Stat., **52**, № 2, 326–339 (2023).

M. E. Durmaz, I. Amirali, G. M. Amiraliyev, *An efficient numerical method for a singularly perturbed Fredholm integro-differential equation with integral boundary condition*, J. Appl. Math. and Comput., **69**, № 1, 505–528 (2023).

S. Elango, A. Tamilselvan, R. Vadivel, N. Gunasekaran, H. Zhu, J. Cao, X. Li, *Finite difference scheme for singularly perturbed reaction diffusion problem of partial delay differential equation with nonlocal boundary condition*, Adv. Differenr. Equat., **2021**, № 1, 1–20 (2021).

P. Farrell, A. Hegarty, J. M. Miller, E. O'Riordan, G. I. Shishkin, *Robust computational techniques for boundary layers*, Chapman and Hall/CRC (2000).

D. Herceg, *On the numerical solution of a singularly perturbed nonlocal problem*, Univ. u Novom Sadu Zb. Rad. Prirod.-Mat. Fak. Ser. Math., **20**, 1–10 (1990).

B. C. Iragi, J. B. Munyakazi, *A uniformly convergent numerical method for a singularly perturbed Volterra integro-differential equation*, Int. J. Comput. Math., **97**, № 4, 759–771 (2020).

T. Jankowski, *Existence of solutions of differential equations with nonlinear multipoint boundary conditions*, Comput. Math. Appl., **47**, № 6-7, 1095–1103 (2004); http://dx.doi.org/10.1016/S0898-1221(04)90089-2.

M. K. Kadalbajoo, V. Gupta, *A brief survey on numerical methods for solving singularly perturbed problems*, Appl. Math. and Comput., **217**, № 8, 3641–3716 (2010).

B. Kalimbetov, V. Safonov, *Regularization method for singularly perturbed integro-differential equations with rapidly oscillating coefficients and rapidly changing kernels*, Axioms, **9**, № 4, Article 131 (2020).

J. Kevorkian, J. D. Cole, *Perturbation methods in applied mathematics*, Springer, New York (1981); http://dx.doi.org/ 10.1007/978-1-4757-4213-8.

M. Kudu, G.M. Amiraliyev, *Finite difference method for a singularly perturbed differential equations with integral boundary condition*, Int. J. Math. Comput., **26**, № 3, 71–79 (2015).

D. Kumar, P. Kumari, *A parameter-uniform collocation scheme for singularly perturbed delay problems with integral boundary condition*, J. Appl. Math. and Comput., **63**, № 1, 813–828 (2020).

S. Kumar, J. Vigo-Aguiar, *Analysis of a nonlinear singularly perturbed Volterra integro-differential equation*, J. Comput. and Appl. Math., **404**, Article 113410 (2022).

T. Linβ, *Layer-adapted meshes for reaction-convection-diffusion problems*, Springer, Berlin (2010).

L.B. Liu, G. Long, Z. Cen, *A robust adaptive grid method for a nonlinear singularly perturbed differential equation with integral boundary condition*, Numer. Algorithms, **83**, № 2, 719–739 (2020).

J. J. H. Miller, E. O'Riordan, G. I. Shishkin, *Fitted numerical methods for singular perturbation problems: error estimates in the maximum norm for linear problems in one and two dimensions*, World Sci. (1996).

K. Munusamy, C. Ravichandran, K. S. Nisar, B. Ghanbari, *Existence of solutions for some functional integrodifferential equations with nonlocal conditions*, Math. Methods Appl. Sci., **43**, № 17, 10319–10331 (2020).

A. H. Nayfeh, *Introduction to perturbation techniques*, Wiley, New York (1993).

R. E. O'Malley, *Singular perturbation methods for ordinary differential equations*, New York, Springer (1991).

A. Panda, J. Mohapatra, I. Amirali, *A second-order post-processing technique for singularly perturbed Volterra integro-differential equations*, Mediterr. J. Math., **18**, № 6, 1–25 (2021).

H. G. Roos, M. Stynes, L. Tobiska, *Numerical methods for singularly perturbed differential equations*, Springer-Verlag (1996).

A. A. Samarski, *The theory of difference schemes*, Marcel Dekker, Inc., New York (2001).

A. M. Samoilenko, A. A. Boichuk, L. I. Karandzhulov, *Fredholm boundary value problems with a singular perturbation*, Different. Equat., **37**, № 9, 1243–1251 (2001).

M. Sapagovas, R. Chegis, *Numerical solution of nonlocal problems} (in Russian), Liet. Mat. Rink., 27, 348–356 (1987).*

M. Sapagovas, R. Chegis, *On some boundary value problems with nonlocal condition (in Russian)*, Different. Equat., **23**, 1268–1274 (1987).

X. Tao, Y. Zhang, *The coupled method for singularly perturbed Volterra integro-differential equations*, Adv. Different. Equaat., **2019**, № 1, 1–16 (2019).

Ö. Yapman, G. M. Amiraliyev, *Convergence analysis of the homogeneous second order difference method for a singularly perturbed Volterra delay-integro-differential equation*, Chaos Solitons Fractals, **150**, Article 111100 (2021).

*Ukrains’kyi Matematychnyi Zhurnal*, Vol. 76, no. 1, Feb. 2024, pp. 115 -31, doi:10.3842/umzh.v76i1.7331.

Copyright (c) 2024 Baransel Gunes, Musa Cakir

This work is licensed under a Creative Commons Attribution 4.0 International License.