Stabilization of homogeneous conformable fractional-order systems

  • Fehmi Mabrouk University of Gafsa, Higher Institute of Applied Sciences and Technology of Gafsa, Tunisia
Keywords: Conformable fractional order systems, Homogeneous fractional sys- tems,Stabilization, control Lyapunov function, Homogeneous feedback, Asymptoti- cally stable.

Abstract

UDC 517.9

We propose an explicit homogeneous feedback control under the assumption that a control Lyapunov function exists for an affine control conformable fractional-order system and satisfies a homogeneity condition. Furthermore, we demonstrate that the existence of a homogeneous control Lyapunov function for a homogeneous affine  conformable fractional-order system results in a homogeneous closed-loop system when applying the previous feedback control.

References

T. Abdeljawad, Q. M. Al-Mdallal, F. Jarad, Fractional logistic models in the frame of fractional operators generated by conformable derivatives, Chaos, Solitons and Fractals, 119, 94–101 (2019). DOI: https://doi.org/10.1016/j.chaos.2018.12.015

T. Abdeljawad, On conformable fractional calculus, J. Comput. and Appl. Math., 279, 57–66 (2015). DOI: https://doi.org/10.1016/j.cam.2014.10.016

A. Atangana, D. Baleanu, A. Alsaedi, New properties of conformable derivative, Open Math., 13, № 1, 889–898 (2015). DOI: https://doi.org/10.1515/math-2015-0081

H. Batarfi, J. Losada, J. J. Nieto, W. Shammakh, Three-point boundary value problems for conformable fractional differential equations, J. Funct. Spaces, Article~ID 706383 (2015). DOI: https://doi.org/10.1155/2015/706383

B. Benaoumeur, F. M. T. Delfim, Existence of solution to a local fractional nonlinear differential equation, J. Comput. and Appl. Math., 312, 127–133 (2016). DOI: https://doi.org/10.1016/j.cam.2016.01.014

N. Benkhettou, S. Hassani, D. F. M. Torres, A conformable fractional calculus on arbitrary time scales, J. King Saud Univ. Sci., 28, 93–98 (2016). DOI: https://doi.org/10.1016/j.jksus.2015.05.003

S. P. Bhat, D. S. Bernstein, Geometric homogeneity with applications to finite-time stability, Math. Control, Signals and Systems, 17, 101–127 (2005). DOI: https://doi.org/10.1007/s00498-005-0151-x

Y. Çenesiz, A. Kurt, E. Nane, Stochastic solutions of conformable fractional Cauchy problems, Statist. Probab. Lett., 124, 126–131 (2017). DOI: https://doi.org/10.1016/j.spl.2017.01.012

W. S. Chung, Fractional Newton mechanics with conformable fractional derivative, J. Comput. and Appl. Math., 290, 150–158 (2015). DOI: https://doi.org/10.1016/j.cam.2015.04.049

T. Fajraoui, B. Ghanmi, F. Mabrouk, F. Omri, Mittag-Leffler stability analysis of a class of homogeneous fractional systems, Arch. Control Sci., 31, № 2, 401–415 (2021); DOI: 10.24425/acs.2021.137424. DOI: https://doi.org/10.24425/acs.2021.137424

H. Jerbi, T. Kharrat, F. Mabrouk, Stabilization of polynomial systems in $R^3$ via homogeneous feedback, J. Appl. Anal. (2022); https://doi.org/10.1515/jaa-2021-2080. DOI: https://doi.org/10.1515/jaa-2021-2080

R. Khalil, M. Al Horani, A. Yousef, M. Sababheh, A new definition of fractional derivative, J. Comput. and Appl. Math., 264, 65–70 (2014). DOI: https://doi.org/10.1016/j.cam.2014.01.002

A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, NorthHolland Mathematics Studies, Elsevier Science B.V., Amsterdam (2006).

H. Koyunbakan, K. Shah, T. Abdeljawad, Well-posedness of inverse Sturm–Liouville problem with fractional derivative, Qual. Theory Dyn. Syst., 22, № 23 (2023). DOI: https://doi.org/10.1007/s12346-022-00727-2

F. Mabrouk, Homogeneity-based exponential stability analysis for conformable fractional-order systems, Ukr. Mat. Zh., 75, № 10, 1402–1410 (2023); DOI:10.3842/umzh.v75i10.7280. DOI: https://doi.org/10.3842/umzh.v75i10.7280

E. Moulay, Stabilization via homogeneous feedback controls, Automatica, 44, № 11, 2981–2984 (2008). DOI: https://doi.org/10.1016/j.automatica.2008.05.003

E. Moulay, W. Perruquetti, Finite time stability and stabilization of a class of continuous systems, J. Math. Anal. and Appl., 323, № 2, 1430–1443 (2006). DOI: https://doi.org/10.1016/j.jmaa.2005.11.046

N. Nakamura, H. Nakamura, Y. Yamashita, H. Nishitani, Homogeneous stabilization for input affine homogeneous systems, IEEE Trans. Automat. Control, 54, № 9, 2271–2275 (2009). DOI: https://doi.org/10.1109/TAC.2009.2026865

G. Nazir, K. Shah, A. Debbouche, R. A. Khan, Study of HIV mathematical model under nonsingular kernel type derivative of fractional order, Chaos, Soliton and Fractals, 139, Article~110095 (2020). DOI: https://doi.org/10.1016/j.chaos.2020.110095

J. E. Napoles V., P. M. Guzman, L. M. Lugo, On the stability of solutions of fractional non conformable differential equations, Stud. Univ. Babeş-Bolyai Math., 65, № 4, 495–502 (2020). DOI: https://doi.org/10.24193/subbmath.2020.4.02

I. Podlubny, Fractional differential equations, in: Mathematics in Science and Engineering, Academic Press. Inc., San Diego, CA (1999).

I. Ullah, K. Shah, T. Abdeljawad et al., Dynamics behaviours of kink solitons in conformable Kolmogorov–Petrovskii–Piskunov equation, Qual. Theory Dyn. Syst., 23, (Suppl. 1), 268 (2024); https://doi.org/10.1007/s12346-024-01119-4. DOI: https://doi.org/10.1007/s12346-024-01119-4

L. Rosier, Homogeneous Lyapunov function for homogeneous continuous vector field, Systems & Control Lett., 19, 467–473 (1992). DOI: https://doi.org/10.1016/0167-6911(92)90078-7

L. P. Rothschild, E. M. Stein, Hypoelliptic differential operators and nilpotent groups, Acta Math., 137, 247–320 (1976). DOI: https://doi.org/10.1007/BF02392419

K. Shah, T. Abdeljawad, F. Jarad, Q. Al-Mdallal, On nonlinear conformable fractional order dynamical system via differential transform method, Comput. Model. Eng. Sci., 136, 1457–1472 (2023). DOI: https://doi.org/10.32604/cmes.2023.021523

M. Sher, K. Shah, M. Sarwar, M. A. Alqudah, T. Abdeljawad, Mathematical analysis of fractional order alcoholism model, Alex. Eng. J., 78, 281–291 (2023). DOI: https://doi.org/10.1016/j.aej.2023.07.010

M. Sher, A. Khan, K. Shah, T. Abdeljawad, Existence and stability theory of pantograph conformable fractional differential problem, Therm. Sci., 27, 237–244 (2023). DOI: https://doi.org/10.2298/TSCI23S1237S

R. Singh, T. Abdeljawad, E. Okyere, L. Guran, Modeling, analysis and numerical solution to malaria fractional model with temporary immunity and relapse, Adv. Different. Equat., 390, (2021). DOI: https://doi.org/10.1186/s13662-021-03532-4

A. Souahi, A. Ben Makhlouf, M. A. Hammami, Stability analysis of conformable fractional-order nonlinear systems, J. Indag. Math., 28, 1265–1274 (2017). DOI: https://doi.org/10.1016/j.indag.2017.09.009

H. W. Zhou, S. Yang, S. Q. Zhang, Conformable derivative approach to anomalous diffusion, Physica A, 491, 1001–1013 (2018). DOI: https://doi.org/10.1016/j.physa.2017.09.101

Published
28.12.2024
How to Cite
Mabrouk, F. “Stabilization of Homogeneous Conformable Fractional-Order Systems ”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 76, no. 12, Dec. 2024, pp. 1802–1812, doi:10.3842/umzh.v76i12.7689.
Section
Research articles