Classes of harmonic functions defined by extended Sălăgean operator
Abstract
UDC 517.57
The object of the present paper is to investigate classes of harmonic functions defined by the extended Sălăgea operator.
By using the extreme points theory we obtain coefficients estimates and distortion theorems for these classes of functions.
Some integral mean inequalities are also pointed out.
References
O. Ahuja, Connections between various subclasses of planar harmonic mappings involving hypergeometric functions, Appl. Math. and Comput., 198, № 1, 305 – 316 (2008), https://doi.org/10.1016/j.amc.2007.08.035 DOI: https://doi.org/10.1016/j.amc.2007.08.035
O. P. Ahuja, J. M. Jahangiri, Certain multipliers of univalent harmonic functions, Appl. Math. Lett., 18, № 12, 1319 – 1324 (2005), https://doi.org/10.1016/j.aml.2005.02.003 DOI: https://doi.org/10.1016/j.aml.2005.02.003
H. A. Al-Kharsani, R. A. Al-Khal, Univalent harmonic functions, JIPAM. J. Inequal. Pure and Appl. Math., 8, № 2, Article 59 (2007).
M. Darus, K. Al-Shaqsi, On certain subclass of harmonic univalent functions, J. Anal. and Appl., 6, № 1, 17 – 28 (2008).
J. Dziok, Classes of harmonic functions associated with Ruscheweyh derivatives, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 113, № 2, 1315--1329 (2019), https://doi.org/10.1007/s13398-018-0542-8 DOI: https://doi.org/10.1007/s13398-018-0542-8
J. Dziok, Harmonic function with missing coefficients, Hacet. J. Math. Stat. 48 (2019), № 6, 1778--1791, https://doi.org/10.15672/hjms.2018.637 DOI: https://doi.org/10.15672/HJMS.2018.637
J. Dziok, On Janowski harmonic functions, J. Appl. Anal., 21, № 2, 99--107 (2015), https://doi.org/10.1515/jaa-2015-0010 DOI: https://doi.org/10.1515/jaa-2015-0010
J. Dziok, J. M. Jahangiri, H. Silverman, Harmonic functions with varying coefficients, J. Inequal. and Appl., 2016, 139, 12 p. (2016), https://doi.org/10.1186/s13660-016-1079-z DOI: https://doi.org/10.1186/s13660-016-1079-z
J. Dziok, M. Darus, J. Soko´ł, T. Bulboaca, Generalizations of starlike harmonic functions, C. R. Math. Acad. Sci. Paris, 354, № 1, 13 – 18 (2016), https://doi.org/10.1016/j.crma.2015.08.001 DOI: https://doi.org/10.1016/j.crma.2015.08.001
J. M. Jahangiri, Harmonic functions starlike in the unit disk, J. Math. Anal. and Appl., 235, №
, 470 – 477 (1999), https://doi.org/10.1006/jmaa.1999.6377 DOI: https://doi.org/10.1006/jmaa.1999.6377
J. M. Jahangiri, G. Murugusundaramoorthy, K. Vijaya, Starlikeness of harmonic functions defined by Ruscheweyh derivatives, J. Indian Acad. Math., 26, № 1,191 – 200 (2004), https://doi.org/10.22034/kjm.2019.81212
J. M. Jahangiri, H. Silverman, Harmonic univalent functions with varying arguments, Int. J. Appl. Math., 8, № 3, 267 – 275 (2002), https://doi.org/110.1186/s13660-016-1079-z
W. Janowski, Some extremal problems for certain families of analytic functions I, Ann. Polon. Math., 28, 297 – 326 (1973), https://doi.org/10.4064/ap-28-3-297-326 DOI: https://doi.org/10.4064/ap-28-3-297-326
S. Y. Karpuzoullari, M. Öztürk, M. Yamankaradeniz, A subclass of harmonic univalent functions with negative coefficients, Appl. Math. and Comput., 142, № 2-3, 469 – 476 (2003), https://doi.org/10.1016/S0096-3003(02)00314-4 DOI: https://doi.org/10.1016/S0096-3003(02)00314-4
M. Krein, D. Milman, On the extreme points of regularly convex sets, Stud. Math., 9, 133 – 138 (1940), https://doi.org/10.4064/sm-9-1-133-138 DOI: https://doi.org/10.4064/sm-9-1-133-138
H. Lewy, On the non-vanishing of the Jacobian in certain one-to-one mappings, Bull. Amer. Math. Soc., 42, № 10, 689 – 692 (1936), https://doi.org/10.1090/S0002-9904-1936-06397-4 DOI: https://doi.org/10.1090/S0002-9904-1936-06397-4
G. Murugusundaramoorthy, K. Vijaya, On certain classes of harmonic functions involving Ruscheweyh derivatives, Bull. Calcutta Math. Soc., 96, № 2, 99 – 108 (2004), https://doi.org/10.1063/1.5112203 DOI: https://doi.org/10.1063/1.5112203
M. Öztürk, S. Yal¸cin, M. Yamankaradeniz, Convex subclass of harmonic starlike functions, Appl. Math. and Comput., 154, 449 – 459 (2004), https://doi.org/10.1016/S0096-3003(03)00725-2 DOI: https://doi.org/10.1016/S0096-3003(03)00725-2
S. Ruscheweyh, Convolutions in geometric function theory, Sem. Math. Sup., Montreal, № 83 (1982). ´
G. S. Sălăgean, Subclasses of univalent functions, Lect. Notes Math., 1013, 362 – 372 (1983), https://doi.org/10.1007/BFb0066543 DOI: https://doi.org/10.1007/BFb0066543
H. Silverman, Harmonic univalent functions with negative coefficients, J. Math. Anal. and Appl., 220, № 1, 283 – 289 (1998), https://doi.org/10.1006/jmaa.1997.5882 DOI: https://doi.org/10.1006/jmaa.1997.5882
S. Yalçın, S. B. Joshi, E. Ya¸sar, On certain subclass of harmonic univalent functions defined by a generalized Ruscheweyh derivatives operator, Appl. Math. Sci. (Ruse), 4, № 5-8, 327 – 336 (2010).
S. Yal¸cin, M. Öztürk, ¨Harmonic functions starlike of the complex order, Mat. Vesnik, 58, № 1-2, 7 – 11 (2006).
S. Yal¸cin, M. Öztürk, M. Yamankaradeniz, On the subclass of Salagean-type harmonic univalent functions, J. Inequal. Pure and Appl. Math., 8, Article 54 (2007), 9 p., https://doi.org/10.1155/2010/821531 DOI: https://doi.org/10.1155/2010/821531
Copyright (c) 2021 J. Dziok
This work is licensed under a Creative Commons Attribution 4.0 International License.