On some domains of convergence of branched continued-fraction expansions of the ratios of Horn hypergeometric functions H4

Authors

  • R. Dmytryshyn Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk https://orcid.org/0000-0003-2845-0137
  • I.-A. Lutsiv Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk
  • M. Dmytryshyn West Ukrainian National University, Ternopil
  • C. Cesarano International University of Telematics UNINETTUNO, Rome, Italy

DOI:

https://doi.org/10.3842/umzh.v74i4.7877

Keywords:

гіпергеометрична функція Горна, гіллястий ланцюговий дріб, голоморфна функція багатьох комплексних змінних, збіжність

Abstract

UDC 517.5

For various conditions imposed  on the parameters of the Horn hypergeometric function H4, we study different domains of convergence of the branched continued-fraction expansions  of the ratios of these functions.

References

Д. И. Боднар, Ветвящиеся цепные дроби, Наук. думка, Киев (1986).

П. І. Боднарчук, В. Я. Скоробогатько, Гіллясті ланцюгові дроби та їх застосування, Наук. думка, Київ (1974).

Н. П. Гоєнко, О. С. Манзій, Розвинення гіпергеометричних функцій Аппеля F1 та Лаурічелли F(N)D у гіллясті ланцюгові дроби, Вісн. Львів. ун-ту, Сер. мех.-мат., 48, 17–26 (1997).

О. С. Манзій, Дослідження розвинення відношення гіпергеометричних функцій Аппеля F3 у гіллястий ланцюговий дріб, Теорія наближень функцій та її застосування, Праці Інституту математики НАН України, 31, 344–353 (2000).

T. M. Antonova, M. V. Dmytryshyn, S. M. Vozna, Some properties of approximants for branched continued fractions of the special form with positive and alternating-sign partial numerators, Carpathian Math. Publ., 10, № 1, 3–13 (2018). DOI: https://doi.org/10.15330/cmp.10.1.3-13

T. Antonova, R. Dmytryshyn, V. Goran, On the analytic continuation of Lauricella–Saran hypergeometric function FK(a1,a2,b1,b2;a1,b2,c3;z), Mathematics, 11, № 21, Article 4487 (2023). DOI: https://doi.org/10.3390/math11214487

T. Antonova, R. Dmytryshyn, V. Kravtsiv, Branched continued fraction expansions of Horn's hypergeometric function H3 ratios, Mathematics, 9, № 2, Article 148 (2021). DOI: https://doi.org/10.3390/math9020148

T. Antonova, R. Dmytryshyn, P. Kril, S. Sharyn, Representation of some ratios of Horn’s hypergeometric functions H7 by continued fractions, Axioms, 12, № 8, Article 738 (2023). DOI: https://doi.org/10.3390/axioms12080738

T. Antonova, R. Dmytryshyn, R. Kurka, Approximation for the ratios of the confluent hypergeometric function Φ^{(N)}_D by the branched continued fractions, Axioms, 11, № 9, Article 426 (2022). DOI: https://doi.org/10.3390/axioms11090426

T. Antonova, R. Dmytryshyn, S. Sharyn, Branched continued fraction representations of ratios of Horn's confluent function H_6, Constr. Math. Anal., 6, № 1, 22–37 (2023). DOI: https://doi.org/10.33205/cma.1243021

T. Antonova, R. Dmytryshyn, S. Sharyn, Generalized hypergeometric function {}_3F_2 ratios and branched continued fraction expansions, Axioms, 10, № 4, Article 310 (2021). DOI: https://doi.org/10.3390/axioms10040310

T. Antonova, R. Dmytryshyn, I.-A. Lutsiv, S. Sharyn, On some branched continued fraction expansions for Horn's hypergeometric function H_4(a,b;c,d;z_1,z_2) ratios, Axioms, 12, № 3, Article 299 (2023). DOI: https://doi.org/10.3390/axioms12030299

T. M. Antonova, On convergence of branched continued fraction expansions of Horn's hypergeometric function H_3 ratios, Carpathian Math. Publ., 13, № 3, 642–650 (2021). DOI: https://doi.org/10.15330/cmp.13.3.642-650

T. M. Antonova, O. M. Sus', S. M. Vozna, Convergence and estimation of the truncation error for the corresponding two-dimensional continued fractions, Ukr. Math. J., 74, № 4, 501–518 (2022). DOI: https://doi.org/10.1007/s11253-022-02079-1

T. M. Antonova, O. M. Sus', Sufficient conditions for the equivalent convergence of sequences of different approximants for two-dimensional continued fractions, J. Math. Sci., 228, № 1, 1–10 (2018). DOI: https://doi.org/10.1007/s10958-017-3601-3

D. I. Bodnar, I. B. Bilanyk, Parabolic convergence regions of branched continued fractions of the special form, Carpathian Math. Publ., 13, № 3, 619–630 (2021). DOI: https://doi.org/10.15330/cmp.13.3.619-630

D. I. Bodnar, I. B. Bilanyk, Two-dimensional generalization of the Thron–Jones theorem on the parabolic domains of convergence of continued fractions, Ukr. Math. J., 74, № 9, 1317–1333 (2023). DOI: https://doi.org/10.1007/s11253-023-02138-1

D. I. Bodnar, O. S. Bodnar, I. B. Bilanyk, A truncation error bound for branched continued fractions of the special form on subsets of angular domains, Carpathian Math. Publ., 15, № 2, 437–448 (2023). DOI: https://doi.org/10.15330/cmp.15.2.437-448

D. I. Bodnar, Expansion of a ratio of hypergeometric functions of two variables in branching continued fractions, J. Math. Sci., 64, № 32, 1155–1158 (1993). DOI: https://doi.org/10.1007/BF01098839

D. I. Bodnar, O. S. Manzii, Expansion of the ratio of Appel hypergeometric functions F_3 into a branching continued fraction and its limit behavior, J. Math. Sci., 107, № 1, 3550–3554 (2001). DOI: https://doi.org/10.1023/A:1011977720316

D. I. Bodnar, Multidimensional C-fractions, J. Math. Sci., 90, № 5, 2352–2359 (1998). DOI: https://doi.org/10.1007/BF02433965

O. S. Bodnar, R. I. Dmytryshyn, S. V. Sharyn, On the convergence of multidimensional S-fractions with independent variables, Carpathian Math. Publ., 12, № 2, 353–359 (2020). DOI: https://doi.org/10.15330/cmp.12.2.353-359

R. I. Dmytryshyn, Convergence of multidimensional A- and J-fractions with independent variables, Comput. Methods Funct. Theory, 22, № 2, 229–242 (2022). DOI: https://doi.org/10.1007/s40315-021-00377-6

R. I. Dmytryshyn, I.-A. V. Lutsiv, Three- and four-term recurrence relations for Horn's hypergeometric function H_4, Res. Math., 30, № 1, 21–29 (2022). DOI: https://doi.org/10.15421/242203

R. I. Dmytryshyn, S. V. Sharyn, Approximation of functions of several variables by multidimensional S-fractions with independent variables, Carpathian Math. Publ., 13, № 3, 592–607 (2021). DOI: https://doi.org/10.15330/cmp.13.3.592-607

R. I. Dmytryshyn, Two-dimensional generalization of the Rutishauser qd-algorithm, J. Math. Sci., 208, № 3, 301–309 (2015). DOI: https://doi.org/10.1007/s10958-015-2447-9

A. Erdélyi, W. Magnus, F. Oberhettinger, F. G. Tricomi, Higher transcendental functions, vol. 1, McGraw-Hill Book Co., New York (1953).

A. Erdélyi, W. Magnus, F. Oberhettinger, F. G. Tricomi, Higher transcendental functions, vol. 2, McGraw-Hill Book Co., New York (1953).

A. Erdélyi, W. Magnus, F. Oberhettinger, F. G. Tricomi, Higher transcendental functions, vol. 3, McGraw-Hill Book Co., New York (1955).

H. Exton, Multiple hypergeometric functions and applications, E. Horwood (ed.), Halsted Press, Chichester (1976).

V. R. Hladun, N. P. Hoyenko, O. S. Manzij, L. Ventyk, On convergence of function F_4(1, 2; 2, 2; z_1, z_2) expansion

into a branched continued fraction, Math. Model. and Comput., 9, № 3, 767–778 (2022). DOI: https://doi.org/10.23939/mmc2022.03.767

J. Horn, Hypergeometrische Funktionen zweier Veränderlichen, Math. Ann., 105, 381–407 (1931). DOI: https://doi.org/10.1007/BF01455825

W. B. Jones, W. J. Thron, Continued fractions: analytic theory and applications, Addison-Wesley Publ. Co., Reading (1980).

H. M. Srivastava, P. W. Karlsson, Multiple Gaussian hypergeometric series, Halsted Press, New York (1985).

H.S . Wall, Analytic theory of continued fractions, D.~Van~Nostrand Co., New York (1948).

Published

26.04.2024

Issue

Section

Research articles

How to Cite

Dmytryshyn, R., et al. “On Some Domains of Convergence of Branched Continued-Fraction Expansions of the Ratios of Horn Hypergeometric Functions H_4”. Ukrains’kyi Matematychnyi Zhurnal, vol. 76, no. 4, Apr. 2024, pp. 502-8, https://doi.org/10.3842/umzh.v74i4.7877.