Domination number on an octagonal chain and an octagonal grid

  • Miroslava Mihajlov Carević Faculty of Mathematics and Computer Science, Alfa BK University, Beograd, Serbia
Keywords: dominating set, domination number, chain of octagons, octagonal grid, coverage index.

Abstract

UDC 519.1

Domination of the graph and topological indices are essential topics in the graph theory. We analyze the problem of $k$-domination, $k\in\{1,2,3\}$, on octagonal chains and an octagonal grid. We determine the minimal $k$-dominating sets and  $k$-domination $k$ numbers for a chain of octagons with two common vertices. By using the obtained results, we determine the $k$-domination numbers for the grid of octagons  $O_{mxn}$ with $m,n\in N$.

References

A. T. Balaban, Applications of graph theory in chemistry, J. Chem. Inform. and Comput. Sci., 25, № 3, 334–343 (1985); https://doi.org/10.1021/ci00047a033. DOI: https://doi.org/10.1021/ci00047a033

M. F. Nadeem, S. Zafar, Z. Zahid, On certain topological indices of the line graph of subdivision graphs, Appl. Math. and Comput., 271, 790–794 (2015); https://doi.org/10.1016/j.amc.2015.09.061. DOI: https://doi.org/10.1016/j.amc.2015.09.061

J. Lu, L. Zhu, W. Gao, Remarks on bipolar cubic fuzzy graphs and its chemical applications, Int. J. Math. and Comput. Engrg, 1, № 1, 1–9 (2023); https://doi.org/10.2478/ijmce-2023-0001. DOI: https://doi.org/10.2478/ijmce-2023-0001

A. Q. Baig, M. Naeem, W. Gao, Revan and hyper-Revan indices of octahedral and icosahedral networks, Appl. Math. and Nonlinear Sci., 3, № 1, 33–40 (2018); https://doi.org/10.21042/AMNS.2018.1.00004. DOI: https://doi.org/10.21042/AMNS.2018.1.00004

S. Gupta, M. Singh, A. K. Madan, Applications of graph theory: relationship of molecular connectivity index and atomic molecular connectivity index with anti-HSV activity, J. Molecular Structure: THEOCHEM, 147–152 (2001); https://doi.org/10.1016/S0166-1280(01)00560-7. DOI: https://doi.org/10.1016/S0166-1280(01)00560-7

S. Gupta, M. Singh, A. K. Madan, Application of graph theory: relationship of eccentric connectivity index and Wiener’s index with anti-inflammatory activity, J. Math. Anal. and Appl., 259–268 (2002); https://doi.org/10.1006/jmaa.2000.7243. DOI: https://doi.org/10.1006/jmaa.2000.7243

A. H. Ahmed, A. Alwardi, M. R. Salestina, On domination topological indices of graphs, Int. J. Anal. and Appl., 19, № 1, 47–64 (2021); https://doi.org/10.28924/2291-8639-19-2021-47. DOI: https://doi.org/10.28924/2291-8639-19-2021-47

K. Husimi, Note on Mayers’ theory of cluster integrals, J. Chem. Phys., 18, № 5, 682–684 (1950); https://doi.org/10.1063/1.1747725. DOI: https://doi.org/10.1063/1.1747725

R. J. Riddell, Contributions to the theory of condensation, Ph. D. Thesis, Univ. Michigan, Ann Arbor (1951); Google Scholar.

B. Zmazek, J. Žerovnik, Computing the weighted Wiener and Szeged number on weighted cactus graphs in linear time, Croat. Chem. Acta, 137–143 (2003); https://hrcak.srce.hr/103089.

B. Zmazek, J. Zerovnik, Estimating the traffic on weighted cactus networks in linear time, in: Ninth International Conference on Information Visualisation, London (2005), p. 536–541; https://doi.org/10.1109/IV.2005.48. DOI: https://doi.org/10.1109/IV.2005.48

E. J. Farrell, Matchings in hexagonal cacti, Int. J. Math. and Math. Sci., 321–338 (1987); https://doi.org/10.1155/S0161171287000395. DOI: https://doi.org/10.1155/S0161171287000395

S. Majstorovic, T. Doslic, A. Klobucar, $k$-Domination on hexagonal cactus chains, Kragujevac J. Math., 36, № 2, 335–47 (2012); https://www.researchgate.net/publication/267656812.

M. M. Carević, Domination on cactus chains of pentagons, Vojnotehnički glasnik, 583–597 (2022); http://doi.org/ 10.5937/vojtehg70-36576. DOI: https://doi.org/10.5937/vojtehg70-36576

M. M. Carević, M. Petrović, N. Denić, Dominating sets on the rhomboidal cactus chains and the icosahedral network, 19th International Symposium INFOTEH-JAHORINA, 152–157 (2020); https://infoteh.etf.ues.rs.ba/zbornik/2020/#papers.

D. Vukičević, A. Klobučar, $k$-Dominating sets on linear benzenoids and on the infinite hexagonal grid, Croat. Chem. Acta, 80, № 2, 187–191 (2007); https://hrcak.srce.hr/12849.

A. Klobučar, A. Klobučar, Total and double total domination number on hexagonal grid, Mathematics, 7, № 11, 1110 (2019); https://doi.org/10.3390/math7111110. DOI: https://doi.org/10.3390/math7111110

A. K. Barišic, A. Klobučar, Double total domination number in certain chemical graphs, AIMS Mathematics, 7, № 11, 19629–19640 (2022); https://doi.org/10.3934/math.20221076. DOI: https://doi.org/10.3934/math.20221076

A. K. Barišić, A. Klobučar, Double total domination number on some chemical nanotubes, Kragujevac J. Math., 50, № 3, 415–423 (2026). DOI: https://doi.org/10.46793/KgJMat2603.415B

S. K. Rao, R. Prasad, Impact of 5G technologies on smart city implementation, Wireless Pers Commun., 100, 161–176 (2018); https://doi.org/10.1007/s11277-018-5618-4. DOI: https://doi.org/10.1007/s11277-018-5618-4

A. Gohar, G. Nencioni, The role of 5G technologies in a smart city: the case for intelligent transportation system, Sustainability, 13, 5188 (2021); https://doi.org/10.3390/su13095188. DOI: https://doi.org/10.3390/su13095188

S. Miladić-Tešić, G. Marković, D. Peraković et al., A review of optical networking technologies supporting 5G communication infrastructure, Wireless Netw, 28, 459–467 (2022); https://doi.org/10.1007/s11276-021-02582-6. DOI: https://doi.org/10.1007/s11276-021-02582-6

Z. Raza, M. Imran, Expected values of some molecular descriptors in random cyclooctane chains, Symmetry, 13, № 11, 2197 (2021); https://doi.org/10.3390/sym13112197. DOI: https://doi.org/10.3390/sym13112197

Z. Raza, M. Arockiaraj, M. S. Bataineh, A. Maaran, Cyclooctane chains: mathematical expected values based on atom degree and sum-degree of Zagreb, harmonic, sum-connectivity, and Sombor descriptors, Eur. Phys. J. Spec. Topics, 1–10 (2023); https://doi.org/10.1140/epjs/s11734-023-00809-5. DOI: https://doi.org/10.1140/epjs/s11734-023-00809-5

R. Todeschini, V. Consonni, Handbook of molecular descriptors, John Wiley and Sons (2008); DOI:10.1002/9783527613106. DOI: https://doi.org/10.1002/9783527613106

Published
28.12.2024
How to Cite
Mihajlov Carević, M. “Domination Number on an Octagonal Chain and an Octagonal Grid”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 76, no. 12, Dec. 2024, pp. 1738–1751, doi:10.3842/umzh.v76i12.7995.
Section
Research articles