The Konov nesting of enveloping algebra into the ring with divisions
Abstract
In 1961 Р. М. Cohn proved that the universal enveloping algebra of any Lie algebra over a field-can be embedded into a division ring. (The Lie algebra is not assumed to be finite dimensional.) Cohn’s method is less than direct. We give a more explicit construction. These division rings have recently found uses in the theory of skew linear groups.
References
Cohn P. M. On the embedding of rings in skew fields// Proc. London Math. Soc.—1961.— 11, N 3.—P. 511—530.
Lichiman A. I. The residual nilpotence of the multiplicative group of a skew field generated by universal enveloping algebras//J. Algebra.— 1988.— 112.— P. 250—263.
Lichiman А. І. РІ-subrings and algebraic elements in enveloping algebras and their fields of fractions// Ibid.— 1989.— 121.— P. 139—154.
Lichtman A. I., Wehrfritz B. A. F. Finite-dimensional subalgebras in matrix rings over transcendental division algebras // Proc. Amer. Math. Soc.— 1989.— 106.— P. 335—344.
Jacobson N. Lie Algebras.— New York etc.: Interscience Pub., 1965.
Copyright (c) 1992 В. A. F. Wehrfritz
This work is licensed under a Creative Commons Attribution 4.0 International License.