Trivial differential equations in spaces $L_p, 0 < p< 1$

  • L. V. Popova Запоріз. ун-т

Abstract

A description of the set $X_p$  of all solutions of the trivial Cauchy problem in $L_p, 0 < p< 1$ is presented. The principal result is Theorem 2, which asserts that $X_p$ is a closed subspace of the $p$ -Banach space $H_p$ of all curves in $L_p$ that satisfy a Hölder condition of order $р$  and emanate from relative to the $p$ -norm, which is equal to the minimal constant in the Hölder condition.

References

Rolewicz S. Metric linear spaces.— Warszawa: PWN, 1985.— 458 p.

Rolewicz S. О funkjach о pochodnej zero // Wiad. mat.— 1959.— 3.— P. 127—128.

Rolewicz S. Metric linear spaces.— Warszawa: PWN, 1972.— 287 p.

Kalioti N. J. Curves with zero derivatives in $F$-spaces// Glasgow Math. J.— 1981.— 22.— P. 19—29.

Published
07.10.1992
How to Cite
Popova L. V. “Trivial Differential Equations in Spaces $L_p, 0 < P&lt; 1$”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 44, no. 9, Oct. 1992, pp. 1238-42, https://umj.imath.kiev.ua/index.php/umj/article/view/8176.
Section
Research articles