Structure of integrated supersymmetric nonlinear dynamic systems on the reduced invariant subvarieties
Abstract
Based on an analysis of a supersymmetric extension of the algebra of pseudodifferential operators on $\mathbb{R}^1$ an infinite hierarchy of supersymmetric Lax-integrable nonlinear dynamical systems is constructed by means of the Yang-Baxter $\mathfrak R$-equation method. The structure of these systems on reduced invariant submanifolds specified by a natural invariant Lax-type spectral problem is investigated.
References
Прикарпатский А. К., Микитюк И. В. Алгебраические аспекты интегрируемости нелинейных динамических систем на многообразиях.— Киев : Наук, думка, 1991.— 288 с.
Хренников А. Ю. Функциональный суперанализ // Успехи мат. наук.— 1988.— 43, № 2.— С. 87—114.
Mulase М. Solvability of the Super $KP$ equation and a generalization of the Birkhoff decomposition//Invent. math.— 1988.— 92, N 1.— P. 1—46.
Manin Yu., Radul A. O. A supersymmetric extension of the $KP$-hierarchy // Communs Math. Phys.— 1985.— 98, N 1.—P. 65—77.
Mathieu P. Supersymmetric extension of Korteweg-de Vries equation// J. Math. Phys.— 1988, — 29, N 1.—P. 2499—2506.
Oewel N. $R$-structures, Yano-Baxter equations and related involution theorems// Ibid.— 1989.— 30, N 5.—P. 1140—1149.
Sydorenko Yu., Stramp W. Symmetry constraint of the $KP$-hierarchy// Inverse Problem.— 1992.— 8, N 7.— P. 210—215.
Copyright (c) 1992 M. M. Pritula , V. S. Kuibida
This work is licensed under a Creative Commons Attribution 4.0 International License.