Equivalent transformation and weighted $H_\infty$-optimization of linear descriptor systems
DOI:
https://doi.org/10.3842/umzh.v77i5.8976Keywords:
Descriptor system; exogenous disturbances; H∞ control; weighted performance measure; LMI.Abstract
UDC 517.925.51; 681.5.03
We study the problem of generalized $H_\infty$-control for a class of linear descriptor systems with nonzero initial vector. We use a generalized performance measure characterizing the weighted level of damping of external and initial disturbances. A nondegenerate transformation of the system is proposed, which allows us to apply well-known methods for the evaluation and attainment of the desired performance criteria for conventional lower-order systems. A numerical example of a controlled hydraulic system with three tanks is presented.
References
1. L. Dai, Singular control systems, Springer, New York (1989). DOI: https://doi.org/10.1007/BFb0002475
2. Guang-Ren Duan, Analysis and design of descriptor linear systems, Springer, New York etc. (2010). DOI: https://doi.org/10.1007/978-1-4419-6397-0
3. Yu Feng, Mohamed Yagoubi, Robust control of linear descriptor systems, Springer Nature Singapore Pte Ltd. (2017). DOI: https://doi.org/10.1007/978-981-10-3677-4
4. S. Campbell, A. Ilchmann, V. Mehrmann, T. Reis (Eds.), Applications of differential-algebraic equations: examples and benchmarks, Differential-Algebraic Equations Forum, Springer Nature, Switzerland AG (2019). DOI: https://doi.org/10.1007/978-3-030-03718-5
5. О. Г. Мазко, Матричнi методи аналiзу та синтезу динамiчних систем, Наукова думка, Київ (2023); https://doi.org/10.37863/6103136622-55. DOI: https://doi.org/10.37863/6103136622-55
6. D. V. Balandin, M. M. Kogan, Generalized $H_∞$-optimal control as a trade-off between the $H_∞$-optimal and $γ$-optimal controls, Autom. and Remote Control, 71, № 6, 993–1010 (2010). DOI: https://doi.org/10.1134/S0005117910060020
7. Z. Feng, J. Lam, S. Xu, S. Zhou, $H_∞$ control with transients for singular systems, Asian J. Control, 18, № 3, 817–827 (2016). DOI: https://doi.org/10.1002/asjc.1163
8. S. Boyd, L. El Ghaoui, E. Feron, V. Balakrishman, Linear matrix inequalities in system and control theory, SIAM Stud. Appl. Math., 15 (1994). DOI: https://doi.org/10.1137/1.9781611970777
9. K. Zhou, J. C. Doyle, K. Glover, Robust and optimal control, Englewood, Prentice-Hall, Inc. (1996).
10. G. E. Dullerud, F. G. Paganini, A course in robust control theory. A convex approach, Springer-Verlag, Berlin (2000). DOI: https://doi.org/10.1007/978-1-4757-3290-0
11. P. Gahinet, P. Apkarian, A linear matrix inequality approach to $H_∞$ control, Intern. J. Robust and Nonlinear Control, 4, 421–448 (1994). DOI: https://doi.org/10.1002/rnc.4590040403
12. S. Xu, J. Lam, Y. Zou, New versions of bounded real lemmas for continuous and discrete uncertain systems, Circuits, Systems and Signal Process, 26, 829–838 (2007). DOI: https://doi.org/10.1007/s00034-007-9000-0
13. M. Chadli, P. Shi, Z. Feng, J. Lam, New bounded real lemma formulation and $H_∞$ control for continuous-time descriptor systems, Asian J. Control, 20, № 1, 1–7 (2018).
14. F. Gao, W. Q. Liu, V. Sreeram, K. L. Teo, Bounded real lemma for descriptor systems and its application, IFAC 14th Triennial World Congress, Beijing, P. R., China (1999), p. 1631–1636. DOI: https://doi.org/10.1016/S1474-6670(17)56277-1
15. I. Masubushi, Y. Kamitane, A. Ohara, N. Suda, $H_∞$ control for descriptor systems: a matrix inequalities approach, Automatica, 33, № 4, 669–673 (1997). DOI: https://doi.org/10.1016/S0005-1098(96)00193-8
16. О. Г. Мазко, Оцінка зваженого рівня гасіння обмежених збурень у дескрипторних системах, Укр. мат. журн., 70, № 11, 1541–1552 (2018).
17. Masaki Inoue, Teruyo Wada, Masao Ikeda, Eiho Uezato, Robust state-space $H_∞$ controller design for descriptor systems, Automatica, 59, 164–170 (2015). DOI: https://doi.org/10.1016/j.automatica.2015.06.021
18. P. Gahinet, A. Nemirovski, A. J. Laub, M. Chilali, The LMI Control Toolbox. For Use with MATLAB. User's Guide, Natick, MA, The MathWorks, Inc. (1995).
19. R. Orsi, U. Helmke, J. B. Moore, A Newton-like method for solving rank constrained linear matrix inequalities, Automatica, 42, № 11, 1875–1882 (2006). DOI: https://doi.org/10.1016/j.automatica.2006.05.026
20. J. Löfberg, YALMIP: A toolbox for modeling and optimization in MATLAB, IEEE International Symposium on Computer Aided Control Systems Design, Taipei, Taiwan (2004), p. 284–289. DOI: https://doi.org/10.1109/CACSD.2004.1393890
21. Ф. Р. Гантмахер, Теория матриц, Москва, Наука (1988).
22. A. G. Mazko, Robust output feedback stabilization and optimization of control systems, Nonlinear Dyn. and Syst. Theory, 17, № 1, 42–59 (2017).
23. О. Г. Мазко, С. М. Кусій, Зважене гасіння обмежених збурень у системі керування літака в режимі посадки, Зб. праць Iнституту математики НАН України, 15, № 1, 88–99 (2018).
24. О. Г. Мазко, Т. О. Котов, Робастна стабілізація і зважене гасіння обмежених збурень у дескрипторних системах керування, Укр. мат. журн., 71, №~10, 1374–1388 (2019).
25. D. Cobb, Controllability, observability and duality in singular systems, IEEE Trans. Automat. Control, 29, 1076–1082 (1984). DOI: https://doi.org/10.1109/TAC.1984.1103451
26. J. M. Araujo, P. R. Barros, C. E. T. Dorea, Design of observers with error limitation in discrete-time descriptor systems: a case study of a hydraulic tank system, IEEE Trans. Control Syst. Technol., 20, № 4, 1041–1047 (2012). DOI: https://doi.org/10.1109/TCST.2011.2159719
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Олексій Мазко

This work is licensed under a Creative Commons Attribution 4.0 International License.