On some classes of non-commutative dimonoids

Authors

  • V. Gavrylkiv Vasyl Stefanyk Carpathian National University, Ivano-Frankivsk

DOI:

https://doi.org/10.3842/umzh.v77i12.9209

Keywords:

напівгрупа, дімоноїд, група автоморфізмів

Abstract

UDC 512.53

We study  dimonoids, i.e., algebraic structures with  two associative binary operations satisfying a given system of axioms. We analyze the properties of dual dimonoids. In the class of non-commutative dimonoids, we construct numerous Abelian, non-Abelian, and rectangular dimonoids. The structure of these objects is analyzed, their automorphism groups and halos are computed.

References

1. L. A. Bokut, Yuqun Chen, Cihua Liu, Grobner–Shirshov bases for dialgebras, Int. J. Algebra and Comput., 20, № 3, 391–415 (2010); DOI: 10.1142/S0218196710005753. DOI: https://doi.org/10.1142/S0218196710005753

2. S. Chotchaisthit, Simple proofs determining all nonisomorphic semigroups of order 3, Appl. Math. Sci., 8, № 26, 1261–1269 (2014). DOI: https://doi.org/10.12988/ams.2014.4153

3. R. Felipe, An analogue to functional analysis in dialgebras, Int. Math. Forum, 2, 1069–1091 (2007). DOI: https://doi.org/10.12988/imf.2007.07093

4. V. M. Gavrylkiv, D. V. Rendziak, Interassociativity and three-element doppelsemigroups, Algebra and Discrete Math., 28, № 2, 224–247 (2019).

5. V. M. Gavrylkiv, Note on cyclic doppelsemigroups, Algebra and Discrete Math., 34, № 1, 15–21 (2022); DOI: http://dx.doi.org/10.12958/adm1991. DOI: https://doi.org/10.12958/adm1991

6. V. M. Gavrylkiv, Classifications of dimonoids with at most three elements, Ukr. Math. Bull., 22, № 3, 359–376 (2025). DOI: https://doi.org/10.37069/1810-3200-2025-22-3-3

7. V. M. Gavrylkiv, On the upfamily extension of a doppelsemigroup, Mat. Stud., 61, № 2, 123–135 (2024); DOI: 10.30970/ms.61.2.123-135. DOI: https://doi.org/10.30970/ms.61.2.123-135

8. V. M. Gavrylkiv, Superextensions of doppelsemigroups, Carpathian Math. Publ., 17, № 2 (2025).

9. V. M. Gavrylkiv, Doppelsemigroups of $k$-linked upfamilies, J. Algebra and Appl., 25, Article 2650207 (2026); DOI: 10.1142/S0219498826502075. DOI: https://doi.org/10.1142/S0219498826502075

10. J. M. Howie, Fundamentals of semigroup theory, Clarendon Press (Oxford University Press), New York (1995). DOI: https://doi.org/10.1093/oso/9780198511946.001.0001

11. K. Liu, A class of ring-like objects, Preprint (2004); https://arxiv.org/abs/math/0411586v2.

12. J.-L. Loday, Dialgebras, In: Dialgebras and related operads: Lect. Notes Math., 1763, Springer-Verlag, Berlin (2001), p. 7–66. DOI: https://doi.org/10.1007/3-540-45328-8_2

13. A. Majumdar, G. Mukherjee, Dialgebra cohomology as a $G$-algebra, Trans. Amer. Math. Soc., 356, № 6, 2443–2457 (2003). DOI: https://doi.org/10.1090/S0002-9947-03-03387-7

14. Y. Movsisyan, S. Davidov, M. Safaryan, Construction of free $g$-dimonoids, Algebra and Discrete Math., 18, № 1, 138–148 (2014).

15. T. Pirashvili, Sets with two associative operations, Cent. Eur. J. Math., 2, 169–183 (2003); DOI: 10.2478/BF02476006. DOI: https://doi.org/10.2478/BF02476006

16. B. Richter, Dialgebren, Doppelalgebren und ihre Homologie, Diplomarbeit, Universitat Bonn (1997).

17. B. M. Schein, Restrictive semigroups and bisemigroups, Technical Report, University of Arkansas, Fayetteville, Arkansas, USA (1989), p. 1–23.

18. A. V. Zhuchok, Commutative dimonoids, Algebra and Discrete Math., 8, № 2, 116–127 (2009).

19. A. V. Zhuchok, Free commutative dimonoids, Algebra and Discrete Math., 9, № 1, 109–119 (2010).

20. A. V. Zhuchok, Dibands of subdimonoids, Mat. Stud., 33, № 2, 120–124 (2010). DOI: https://doi.org/10.30970/ms.33.2.120-124

21. A. V. Zhuchok, Free rectangular dibands and free dimonoids, Algebra and Discrete Math., 11, № 2, 92–111 (2011). DOI: https://doi.org/10.1007/s11253-011-0498-8

22. A. V. Zhuchok, Some semilattice decompositions of dimonoids, Demonstr. Math., 44, № 3, 629–645 (2011); DOI: 10.1515/dema-2013-0323. DOI: https://doi.org/10.1515/dema-2013-0323

23. A. V. Zhuchok, Dimonoids, Algebra and Logic, 50, № 4, 323–340 (2011). DOI: https://doi.org/10.1007/s10469-011-9144-7

24. A. V. Zhuchok, Free dimonoids, Ukr. Math. J., 63, № 2, 196–208 (2011); DOI: 10.1007/s11253-011-0498-8. DOI: https://doi.org/10.1007/s11253-011-0498-8

25. A. V. Zhuchok, Free normal dibands, Algebra and Discrete Math., 12, № 2, 112–127 (2011).

26. A. V. Zhuchok, Free $(lr, rr)$-dibands, Algebra and Discrete Math., 15, № 2, 295–304 (2013).

27. A. V. Zhuchok, Free $n$-nilpotent dimonoids, Algebra and Discrete Math., 16, № 2, 299–310 (2013).

28. A. V. Zhuchok, Free products of dimonoids, Quasigroups Relat. Syst., 21, № 2, 273–278 (2013).

29. A. V. Zhuchok, Decompositions of free products of dimonoids, Math. Pannonica, 25, № 1, 71–91 (2014–2015).

30. A. Zhuchok, Yu. Zhuchok, Free left $n$-dinilpotent dimonoids, Semigroup Forum, 93, № 1, 161–179 (2016); DOI: 10.1007/s00233-015-9743-z. DOI: https://doi.org/10.1007/s00233-015-9743-z

31. A. V. Zhuchok, Structure of relatively free dimonoids, Commun. Algebra, 45, № 4, 1639–1656 (2017); DOI: 10.1080/00927872.2016.1222404. DOI: https://doi.org/10.1080/00927872.2016.1222404

32. A. V. Zhuchok, On the structure of dimonoids, Semigroup Forum, 94, № 2, 194–203 (2017); DOI: 10.1007/s00233-016-9795-8. DOI: https://doi.org/10.1007/s00233-016-9795-8

33. A. V. Zhuchok, Relatively free dimonoids and bar-units, Int. J. Algebra and Comput., 31, № 8, 1587–1599 (2021); DOI: 10.1142/S0218196721500570. DOI: https://doi.org/10.1142/S0218196721500570

34. Yu. V. Zhuchok, Representations of ordered dimonoids by binary relations, Asian-Eur. J. Math., 7, Article 1450006 (2014); DOI: 10.1142/S1793557114500065. DOI: https://doi.org/10.1142/S1793557114500065

35. Yu. V. Zhuchok, The endomorphism semigroup of a free dimonoid of rank 1, Bul. Acad. Ştiinƫe Repub. Mold. Mat., 76, № 3, 30–37 (2014).

36. Yu. V. Zhuchok, Free abelian dimonoids, Algebra and Discrete Math., 20, № 2, 330–342 (2015).

37. Yu. V. Zhuchok, Automorphisms of the endomorphism semigroup of a free commutative dimonoid, Commun. Algebra, 45, № 9, 3861–3871 (2017); DOI: 10.1080/00927872.2016.1248241. DOI: https://doi.org/10.1080/00927872.2016.1248241

38. Yu. V. Zhuchok, Free abelian diband, Visnyk Lviv Univ. Ser. Mech., Math., 84, 15–21 (2017).

39. Yu. V. Zhuchok, Automorphisms of the endomorphism semigroup of a free abelian diband, Algebra and Discrete Math., 25, № 2, 322–332 (2018).

40. Yu. V. Zhuchok, Automorphisms of the category of free dimonoids, J. Algebra, 657, 883–895 (2024); DOI: 10.1016/j.jalgebra.2024.05.039. DOI: https://doi.org/10.1016/j.jalgebra.2024.05.039

Published

14.11.2025

Issue

Section

Research articles

How to Cite

Gavrylkiv, V. “On Some Classes of Non-Commutative Dimonoids”. Ukrains’kyi Matematychnyi Zhurnal, vol. 77, no. 12, Nov. 2025, pp. 703–714, https://doi.org/10.3842/umzh.v77i12.9209.